• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Heat Transfer Analysis of Bio-Printed Tissue Mimicking Material Mixed with Silver Nanoparticles

Chandrasegaran, Jedeshkeran 08 1900 (has links)
Novel tissue mimicking materials have been developed for cancer treatment research. In the present research work, the tissue mimicking material is printed using 3D bioprinting technology. The nanoparticles are homogeneously mixed with tissue mimicking materials to enhance the heating capacity. The thermal conductivity of tissue mimicking materials is measured using a micropipette thermal sensor (MTS). Further, the optimal value is identified based on optimization technique and incorporated into a theoretical model to predict the surface temperature of microsphere. The heat conduction governing equation with Lambert law is numerically solved using COMSOL Multiphysics software. To validate the present simulation results, the experiments are conducted using a continuous laser system.
2

Development of a colonoscopy simulator for the evaluation of colonoscopy devices

Pakleppa, Markus January 2016 (has links)
Colonoscopy is the current standard for colorectal cancer screening. This procedure requires improvement since it causes patient pain and can even result in injury. Novel colonoscopy devices have to be evaluated to gain information about their performance. At the preclinical stage of the device development the evaluation is typically performed in laboratory experiments. For these experiments an artificial environment is required which can recreate the anatomical and biomechanical features of the colon. A colonoscopy simulator for the evaluation of colonoscopy devices was developed within the ERC funded CoDIR project (Colonic Disease Investigation by Robotic Hydrocolonoscopy). The here developed simulator had to provide a colon phantom with realistic biomechanical properties as well as a sensor setup to measure signals which can be used to quantify the performance of devices which are tested within the simulator. Related literature was reviewed and possible tissue mimicking materials were selected. The suitability of the selected materials was evaluated by testing the frictional and elastic properties of the materials and subsequently comparing the results to those of colon tissue. PVA cryogel was selected as the most suitable material as it exhibits comparable elasticity and coefficients of friction. The tissue mimicking materials were mould casted into phantoms which were designed to represent the anatomical features of the colon. A simulator environment was developed which integrates the phantom as well as force and pressure sensors into a functional system. The sensors measure mesenteric forces and intraluminal pressures which can be related to the performance of tested devices. The simulator allows the arrangement of the sensors and the phantoms in an adjustable, modular approach. The simulator environment was successfully applied in the evaluation of a novel colonoscopy device. The results indicate that PVA cryogels exhibit unique mechanical properties which can be compared to those of colon tissue. The developed colonoscopy simulator provides a promising tool which can aid the development of novel colonoscopy devices.
3

Characterization of tissue mimicking materials for testing of microwave medical devices

Dancsisin, Mary Virginia 06 August 2011 (has links)
The driving force behind this thesis was the need for developing tissue mimicking materials that can mimic the dielectric properties of various biological soft tissues to aid in the development and testing of electromagnetic medical devices. Materials that can mimic the dielectric properties of human skin, adipose, muscle, malignant and healthy fibroglandular tissue, liver, pancreas, and kidney within the frequency range of 500 MHz to 20 GHz have been characterized and tested. The tissue mimicking materials are used to construct biological phantoms for studies that involve the investigation of wireless medical telemetry and a microwave breast cancer detection device.
4

Acoustic characterisation of ultrasound contrast agents at high frequency

Sun, Chao January 2013 (has links)
This thesis aims to investigate the acoustic properties of ultrasound contrast agents (UCAs) at high ultrasound frequencies. In recent years, there has been increasing development in the use of high frequency ultrasound in the fields of preclinical, intravascular, ophthalmology and superficial tissue imaging. Although research studying the acoustic response of UCAs at low diagnostic ultrasonic frequencies has been well documented, quantitative information on the acoustical properties of UCAs at high ultrasonic frequencies is limited. In this thesis, acoustical characterisation of three UCAs was performed using a preclinical ultrasound scanner (Vevo 770, VisualSonics Inc., Canada). Initially the acoustical characterisation of five high frequency transducers was measured using a membrane hydrophone with an active element of 0.2 mm in diameter to quantify the transmitting frequencies, pressures and spatial beam profiles of each of the transducers. Using these transducers and development of appropriate software, high frequency acoustical characterisation (speed and attenuation) of an agar-based tissue mimicking material (TMM) was performed using a broadband substitution technique. The results from this study showed that the acoustical attenuation of TMM varied nonlinearly with frequency and the speed of sound was approximately constant 1548m·s-1 in the frequency range 12-47MHz. The acoustical properties of three commercially available lipid encapsulated UCAs including two clinical UCAs Definity (Lantheus Medical Imaging, USA) and SonoVue (Bracco, Italy) and one preclinical UCAs MicroMarker (untargeted) (VisualSonics, Canada) were studied using the software and techniques developed for TMM characterisation. Attenuation, contrast-to-tissue ratio (CTR) and subharmonic to fundamental ratio were measured at low acoustic pressures. The results showed that large off-resonance and resonant MBs predominantly contributed to the fundamental response and MBs which resonated at half of the driven frequency predominantly contributed to subharmonic response. The effect of needle gauge, temperature and injection rate on the size distribution and acoustic properties of Definity and SonoVue was measured and was found to have significant impacts. Acoustic characterisations of both TMM and UCAs in this thesis extend our understanding from low frequency to high frequency ultrasound and will enable the further development of ultrasound imaging techniques and UCAs design specifically for high frequency ultrasound applications.
5

Implantable Antennas For Wireless Data Telemetry: Design, Simulation, And Measurement Techniques

Karacolak, Tutku 11 December 2009 (has links)
Recent advances in electrical engineering have let the realization of small size electrical systems for in-body applications. Today’s hybrid implantable systems combine radio frequency and biosensor technologies. The biosensors are intended for wireless medical monitoring of the physiological parameters such as glucose, pressure, temperature etc. Enabling wireless communication with these biosensors is vital to allow continuous monitoring of the patients over a distance via radio frequency (RF) technology. Because the implantable antennas provide communication between the implanted device and the external environment, their efficient design is vital for overall system reliability. However, antenna design for implantable RF systems is a quite challenging problem due to antenna miniaturization, biocompatibility with the body’s physiology, high losses in the tissue, impedance matching, and low-power requirements. This dissertation presents design and measurement techniques of implantable antennas for medical wireless telemetry. A robust stochastic evolutionary optimization method, particle swarm optimization (PSO), is combined with an in-house finite-element boundary-integral (FE-BI) electromagnetic simulation code to design optimum implantable antennas using topology optimization. The antenna geometric parameters are optimized by PSO, and a fitness function is computed by FE-BI simulations to evaluate the performance of each candidate solution. For validating the robustness of the algorithm, in-vitro and in-vivo measurement techniques are also introduced. To illustrate this design methodology, two implantable antennas for wireless telemetry applications are considered. First, a small-size dual medical implant communications service (MICS) (402 MHz – 405 MHz) and industrial, scientific, and medical (ISM) (2.4 GHz – 2.48 GHz) band implantable antenna for human body is designed, followed by a dual band implantable antenna operating also in MICS and ISM bands for animal studies. In order to test the designed antennas in-vitro, materials mimicking the electrical properties of human and rat skins are developed. The optimized antennas are fabricated and measured in the materials. Moreover, the second antenna is in-vivo tested to observe the effects of the live tissue on the antenna performance. Simulation and measurement results regarding antenna parameters of the designed antennas such as return loss and radiation pattern are given and discussed in detail. The development details of the tissue-mimicking materials are also presented.
6

Development of acoustic tissue mimicking materials for preclinical ultrasound imaging applications

Rabell Montiel, Adela January 2018 (has links)
Many applications of ultrasound test phantoms require that the acoustical properties of the phantom should closely match those of soft tissue. Numerous commercial test phantoms of this type are available for use with clinical ultrasound scanners, which use frequencies up to 20 MHz. However, scanners designed for imaging small animals in preclinical studies, typically operate at much higher frequencies. No commercially available test phantoms exist for use at frequencies above 20 MHz. The aim of this work was to develop a tissue-mimicking-material (TMM) that closely matches the acoustic properties of small animal tissues at high frequencies (HF). Such a material would, therefore, be suitable for ultrasound test phantoms for application with HF ultrasound scanners (20 MHz to 50 MHz). A three-step approach was adopted to address this lack of a suitable HF-TMM. Firstly, verify the acoustic characteristics of the existing IEC agar-based TMM. Secondly, establish the acoustic properties (speed of sound and attenuation coefficient) of small animal tissue at high frequencies. Thirdly, develop a TMM which exhibits, as closely as possible, these small animal tissue acoustic characteristics. A pulse-echo substitution method was used throughout to characterise the materials and the tissue samples. The speed of sound and attenuation coefficient of an IEC agar-based TMM were measured using two different techniques. Initially, a widely used method was tried, where samples are wrapped in film and placed in degassed, deionised water for assessment. The second technique was developed and validated for use in this work. In this method, TMM samples were uncovered (without film) and were both stored and assessed in a TMM preserving fluid. The second method provided up to four times more consistent results. The acoustical properties of the individual components of the IEC agar-based TMM were then measured in order to determine whether the overall attenuation coefficient of the agar TMM was a linear sum of the attenuation coefficients of its component parts. Within experimental uncertainties, this was found to be the case. This is a key observation from which the formulation of an agar TMM, matching the acoustic properties of small animal tissue, can be facilitated. The acoustical properties (speed of sound and attenuation coefficient) of mouse brain, liver, and kidney were measured using a preclinical ultrasound scanner.
7

Fluid dynamic assessments of spiral flow induced by vascular grafts

Kokkalis, Efstratios January 2014 (has links)
Peripheral vascular grafts are used for the treatment of peripheral arterial disease and arteriovenous grafts for vascular access in end stage renal disease. The development of neo-intimal hyperplasia and thrombosis in the distal anastomosis remains the main reason for occlusion in that region. The local haemodynamics produced by a graft in the host vessel is believed to significantly affect endothelial function. Single spiral flow is a normal feature in medium and large sized vessels and it is induced by the anatomical structure and physiological function of the cardiovascular system. Grafts designed to generate a single spiral flow in the distal anastomosis have been introduced in clinical practice and are known as spiral grafts. In this work, spiral peripheral vascular and arteriovenous grafts were compared with conventional grafts using ultrasound and computational methods to identify their haemodynamic differences. Vascular-graft flow phantoms were developed to house the grafts in different surgical configurations. Mimicking components, with appropriate acoustic properties, were chosen to minimise ultrasound beam refraction and distortion. A dual-beam two-dimensional vector Doppler technique was developed to visualise and quantify vortical structures downstream of each graft outflow in the cross-flow direction. Vorticity mapping and measurements of circulation were acquired based on the vector Doppler data. The flow within the vascular-graft models was simulated with computed tomography based image-guided modelling for further understanding of secondary flow motions and comparison with the experimental results. The computational assessments provided a three-dimensional velocity field in the lumen of the models allowing a range of fluid dynamic parameters to be predicted. Single- or double-spiral flow patterns consisting of a dominant and a smaller vortex were detected in the outflow of the spiral grafts. A double- triple- or tetra-spiral flow pattern was found in the outflow of the conventional graft, depending on model configuration and Reynolds number. These multiple-spiral patterns were associated with increased flow stagnation, separation and instability, which are known to be detrimental for endothelial behaviour. Increased in-plane mixing and wall shear stress, which are considered atheroprotective in normal vessels, were found in the outflow of the spiral devices. The results from the experimental approach were in agreement with those from the computational approach. This study applied ultrasound and computational methods to vascular-graft phantoms in order to characterise the flow field induced by spiral and conventional peripheral vascular and arteriovenous grafts. The results suggest that spiral grafts are associated with advanced local haemodynamics that may protect endothelial function and thereby may prevent their outflow anastomosis from neo-intimal hyperplasia and thrombosis. Consequently this work supports the hypothesis that spiral grafts may decrease outflow stenosis and hence improve patency rates in patients.

Page generated in 0.0789 seconds