• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 333
  • 134
  • 41
  • 34
  • 26
  • 17
  • 12
  • 7
  • 5
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • Tagged with
  • 713
  • 713
  • 164
  • 127
  • 124
  • 69
  • 65
  • 64
  • 61
  • 61
  • 54
  • 54
  • 52
  • 50
  • 47
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Repression of photoreactivation and dark repair of coliform bacteria by TiO[subscript 2]-modified UV-C irradiation /

Ho, Chiu Man. January 2009 (has links)
Includes bibliographical references (p. 78-85).
112

Nanotoxicology from nano titanium dioxide particle size effect on Ceriodaphnia dubia to death mechanism /

Chou, Hsun-Wen. January 2008 (has links)
Thesis (M.A.S.)--University of Delaware, 2008. / Principal faculty advisor: Chin-Pao Huang, Dept. of Civil and Environmental Engineering. Includes bibliographical references.
113

Interactions between titanium dioxide nanoparticles and algal cells at moderate particle concentration

Lin, Ming-Yu. January 2008 (has links)
Thesis (M.C.E.)--University of Delaware, 2008. / Principal faculty advisor: Chin-Pao Huang, Dept. of Civil and Environmental Engineering. Includes bibliographical references.
114

Synthesis effects on grain size and phase content in the anatase-rutile TiO₂ system.

Farrell, Kimberly A. January 2001 (has links)
Thesis (M.S.)--Worcester Polytechnic Institute. / Includes bibliographical references (leaves 48-51).
115

Arsenic remediation using nanocrystalline titanium dioxide

Duncan, Elizabeth Gunn. January 2009 (has links)
Thesis (Ph.D.)--Aberdeen University, 2009. / Title from web page (viewed on Dec 1, 2009). Includes bibliographical references.
116

The selective adsorption of the various types of amino acids on several colloidal adsorbents

Johnson, Maria Benigna, January 1938 (has links)
Thesis (Ph. D.)--Catholic University of America, 1938. / Bibliography: p. 29-30.
117

IR Studies of the Interaction of Surfactants and Polyelectrolytes Adsorbed on TIO2 Particles

Li, Haiyan January 2004 (has links) (PDF)
No description available.
118

Preparação, caracterização e estudo da eficiência na fotodegradação e adsorção de Rodamina B de heteroestruturas de TiO2/α-Fe2O3 /

Maluf, Nágila El Chamy. January 2016 (has links)
Orientador: Fenelon Martinho Pontes / Banca: Alejandra Hortência Miranda Gonzáles / Banca: Luiz Carlos da Silva Filho / O Programa de Pós Graduação em Ciência e Tecnologia de Materiais, PosMat, tem caráter institucional e integra as aticidades de pesquisa em diversos campi / Resumo: A fotocatálise heterogênea, utilizando dióxido de titânio com estrutura do tipo anatase, tem se mostrado uma alternativa promissora para a remediação de sistemas aquáticos contaminados. Com o intuito de aumentar a eficiência do fotocatalisador, estudos científicos têm reportado a heterojunção deste óxido com estruturas do tipo hematita do óxido de ferro, α-Fe2O3. Neste estudo, foi investigada a síntese de nanoestruturas de TiO2 puro, α-Fe2O3 pura e heteroestruturas de TiO2/α-Fe2O3 em diferentes proporções dos óxidos a fim de testá-los como fotocatalisadores na degradação de um corante com elevada toxicidade, a Rodamina B. Os materiais foram sintetizados por rotas híbridas, utilizando o Metódo do Peróxido Oxidante com posterior tratamento hidrotérmico, totalizando a produção de 8 amostras. Foram empregadas três rotas de síntese: a rota (a) foi responsável pela síntese de TiO2 puro variando-se o pH do meio reacional na etapa de tratamento hidrotérmico, a rota (b) foi utilizada para a preparação de α-Fe2O3 pura e a rota (c) foi empregada na produção das heteroestruturas de TiO2/α-Fe2O3 nas concentrações de 0,1, 0,5, 1,0 e 5,0% p/p de hematita. As amostras foram caracterizadas quanto a sua estrutura, microestrutura e propriedades superficiais com o auxílio das técnicas de DRX, FT-Raman, método de BET, MEV/FEG, MET, TG e FT-IR. A análise dos resultados de caracterização estrutural mostrou que a rota (a) é eficiente para a síntese de TiO2 anatase quando realizada em meio básico, p... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: The heterogeneous photocatalysis using titanium dioxide with anatase type structure, has proved to be a promising alternative for the remediation of contaminated aquatic systems. In order to increase the efficiency of this photocatalyst, scientific studies have reported the heterojunction of this oxide with hematite structures of iron oxide, α-Fe2O3. In this study, it was investigated the synthesis of pure TiO2 nanostructures, pure α-Fe2O3 and TiO2/α-Fe2O3 heterostructures in different proportions in order to test them as photocatalysts in the degradation of a dye having high toxicity, the Rhodamine B. The materials were synthesized by hybrid routes, using the Oxidant Peroxo Method with subsequent hydrothermal treatment, producing a total of 8 samples. Three synthesis routes were employed: the route (a) was responsible for the pure TiO2 synthesis by varying the pH of the reaction medium in the hydrothermal treatment step, route (b) was used for the preparation of pure α-Fe2O3 and route (c) was employed in the production of TiO2/α-Fe2O3 heterostructures in concentrations of 0.1, 0.5, 1.0 and 5.0% w/w of hematite. The samples were characterized as their structure, microstructure and surface properties with XRD, FT-Raman, BET method, SEM/FEG, TEM, TG and FT-IR techniques. The results of the structural characterization showed that route (a) is effective for the synthesis of anatase TiO2 when carried out in basic medium, producing a mixture of phases anatase/rutile when performed ... (Complete abstract click electronic access below) / Mestre
119

Preparation and application of plasmon metal enhanced titanium dioxide photocatalyst for the removal of organics in water

Nyamukamba, Pardon January 2016 (has links)
Advanced oxidation processes are capable of removing organic compounds that cannot be removed by conventional water treatment methods. Among the oxidation processes, photo-catalysis using titanium dioxide (TiO2) is a promising method but suffers from rapid electron-hole recombination rates and only absorbs UV light which is a small percentage (5 percent) of the total solar radiation. Therefore there is a need to reduce the recombination rates and also extend the absorption of the photo-catalyst into the visible region which constitutes 55 percent of the total solar radiation. The major aims of this study were to prepare plasmon metal decorated and doped TiO2 photo-catalysts immobilized on quartz substrates and test their photo-catalytic and antimicrobial activities. The effect of film thickness (loading) and use of different shapes of plasmon metal nanostructures was investigated. TiO2 thin films were prepared by a sputter coating technique while plasmon metal (Au & Ag)/carbon co-doped TiO2 by a simple sol gel process and plasmon metal films were prepared by the thermal evaporation technique. Different plasmon metal nanostructures (nanorods, dendrites, nanowires and spherical nanoparticles) were prepared using a wet chemical technique using sodium borohydride as the reducing agent. Nanocomposites of co-doped TiO2 photo-catalyst and plasmon elements of different proportions were also prepared. The prepared photo-catalysts were coated onto etched and MPTMS (3-Mercaptopropyl trimethoxysliane) treated quartz glass substrate which is a stable support favouring easy recovery. The prepared materials were characterized by XRD, HRTEM, TEM, HRSEM, FT-IR, SEM, PIXE and TGA while the doped TiO2 was characterized by XPS, BET, CHNS and Raman Spectroscopy. The effect of pH of solution, presence of other contaminants and salts in solution, initial concentration of the model pollutant and type of the plasmonic elements on the photocatalytic activity of TiO2 towards 4-(4-sulfophenylazo)-N,N-dimethyl aniline (methyl orange) were also investigated. The selected TiO2 photo-catalyst films were tested for antimicrobial properties. The effect of different types of plasmon elements on the antimicrobial activity of TiO2 against E. coli ATCC 3695 was evaluated under both sunlight and weak UV light. Under UV light, Ag showed the highest enhancement in photo-catalytic activity of TiO2 than Au and Cu. The photo-catalytic activity of TiO2 increased with an increase in Ag content to an optimum loading and then started to decrease with a further increase in loading. For Cu and Au, photo-activity activity increased with an increase in plasmon metal content. Under sunlight, Cu showed the highest enhancement of TiO2 photocatalytic compared to Ag and Au. The change in order of deposition showed that Au films enhanced the photo-activity better when they were deposited underneath rather than on top of TiO2 on quartz supports but Ag films performed better in enhancing photo-activity when they were deposited on top of TiO2. The use of bimetallic layers and three layer systems of different plasmon elements enhanced photo-catalytic activity better than the use of a monometallic layer. The presence of other organic contaminants and salts in solutions was found to reduce the photo-degradation of methyl orange due to preferential adsorption of other contaminants. When the pH was increased, the photocatalytic activity of TiO2 towards methyl orange was reduced. In antimicrobial studies, it was found that the plasmon elements greatly improved the antibacterial action of TiO2 against Escherichia coli ATCC 3695 in water and the best antibacterial action was observed with silver/carbon co-doped TiO2 photo-catalyst under sunlight The doped samples consisted of polydisperse nanoparticles which were found to be beneficial for photo-catalytic activity enhancement under sunlight.
120

INFLUENCE OF TIO2 ENGINEERED NANOPARTICLES ON PHOTOSYNTHETIC EFFICIENCY AND CONTAMINANT UPTAKE

Bradfield, Scott Jared 01 August 2015 (has links)
The production of engineered nanoparticles (ENPs) is growing at an incredibly fast rate and will soon become a trillion dollar industry. At this rate of production, there is a great potential for engineered nanomaterials to be released into the environment, both intentionally and unintentionally. TiO2 ENPs are one of the most widely produced nanoparticles with a broad range of applications in paints, inks, sunscreens, cosmetics, astronautics, and air/water purification. TiO2 ENPs have been proposed for their use in agricultural settings as a UV protectant, a defense against harmful bacteria and fungi, or a catalyst for the degradation of pesticides and herbicides. Furthermore, it has been shown to increase several aspects of photosynthesis in spinach including Rubisco and Rubisco activase activity, chlorophyll synthesis, and oxygen evolution. Foliar application of TiO2 ENPs on spinach resulted in a significant increase in plant fresh weight, dry weight, chlorophyll content, net photosynthetic rate, and carboxylase activity of Rubisco. These findings have prompted investigations for the use of TiO2 ENPs as a foliar spray to promote plant growth and yield. The first main objective of this research was to determine if TiO2 ENPs has the capabilities to increase photosynthetic production in Zea mays at concentrations similar to that of the experiments performed with spinach. Secondly, it was examined if the size of the TiO2 was a factor in the increased photosynthetic response by comparing TiO2 ENPs with bulk TiO2. Finally, the determination of whether the boost in photosynthesis resulted in an increased seed quality/quantity. Another aspect of this research was to determine how the interaction of TiO2 ENPs with inorganic contaminants may affect the uptake and accumulation of the contaminants in plants. Cadmium and arsenic are two of the top ten most hazardous substances on the priority list of the Agency for Toxic Substances and Disease Registry. Sources for Cd and As contamination include atmospheric deposition resulting from mining, smelting, and fuel combustion, phosphate fertilizers, and sewage sludge. Both of these contaminants can be taken up by plant roots and translocated to the leaves and fruits, thus entering the food chain. The release of TiO2 ENPs into domestic and industrial wastewaters is expected to represent the largest release of these nanoparticles. There has been data showing that up to 99% of TiO2 ENPs that enter wastewater treatment plants are retained in the sludge. In addition, TiO2 ENPs are being used at some water treatment plants because of their strong adsorption strength for hazardous materials, such as cadmium, arsenic, and copper and also the photocatalytic breakdown of harmful organic compounds. Since sewage sludge from wastewater treatment plants is applied to agricultural lands as a soil conditioner and fertilizer, this has resulted in the introduction of an estimated 120 g kg-3 per year of TiO2 ENPs. With sewer sludge being the common factor for contamination of agricultural fields, there is a high potential for the simultaneous introduction of TiO2 ENPs and heavy metal contaminants. To date, there has been very little research done for ENP and contaminant interactions. Of the research that has been performed on the subject, the majority of it was conducted using aquatic systems involving fish and daphnids. This research has shown that the interaction of TiO2 ENPs and metal contaminants generally increases the concentration of the contaminant in the organism, however it is still unclear whether the contaminant is biologically available or if it is adsorbed to the surface of the TiO2 ENPs. This information gives rise to two alternative hypotheses on how TiO2 ENPs may affect the fate of heavy metal contaminants in a single substrate growth media. The first is that the TiO2 ENPs may sequester the heavy metals in the soil thus decreasing the amount of the heavy metals that can be taken up by the plant. The alternative is that the TiO2 ENPs could act as a carrier of the metals i.e. if the plant is able to take up the intact TiO2 ENP with heavy metals adsorbed to the surface, it could potentially increase the amount of the metals that enter the plants. The main objective of this study was to determine which of these scenarios is true for broccoli plants that were grown in cadmium and arsenate contaminated growth media.

Page generated in 0.1564 seconds