1 |
Développements et applications de méthodes pour la description de l’énergie de corrélation dans les molécules et les solides / Developments and applications of methods for the description of correlation energy in molecules and solidsClaudot, Julien 05 July 2018 (has links)
Les fonctionnelles de la densité couramment utilisées ont rencontrées un succès spectaculaire dans la modélisation des systèmes physiques, chimiques, et biologiques. Toutefois, elles se sont avérées inadaptées pour décrire certaines situations, comme par exemple les forces de dispersion de London ou les phénomènes de corrélation forte. Dans le cadre de cette thèse, nous nous sommes intéressés à des développements récents de la formulation de l’énergie de corrélation exprimée à partir du théorème de fluctuation-dissipation et connexion adiabatique, visant à pallier ces problèmes. En particulier, différentes implémentations des méthodes au-delà de l’approximation de la phase aléatoire, qui permettent la prise en compte de la contribution d’échange dans le calcul de l’énergie de corrélation, ont été comparées. Ensuite, afin de réduire drastiquement la complexité numérique, une procédure d’orthogonalisation des vecteurs utilisées pour représenter la matrice diélectrique a été développée. Ces méthodes ont ensuite été appliquées au calcul de l’énergie de liaison de petits complexes moléculaires. La formulation de l’énergie de corrélation de la théorie de perturbation de Møller-Plesset dans le contexte matrice diélectrique est aussi présentée et testée. En parallèle, des calculs utilisant les méthodes semi-empiriques numériquement efficaces ont été conduits sur trois ensembles de molécules afin d’en tester les performances concernant les énergies de liaisons en les comparant aux valeurs de références disponibles dans la littérature / Commonly used density functionals have encountered a spectacular success in the modelling of physical, chemical or biological systems. However, they have proven to be unsuitable to describe some situations, such as London’s dispersion forces or strong correlation behaviour. In this thesis, we have been interested in recent developments in the formulation of the correlation energy from the adiabatic connection fluctuation dissipation theorem, to overcome these problems. In particular, different implementations of methods beyond the random phase approximation, which allow to take into account the exchange contribution in the computation of the correlation energy, have been compared. Then, in order to drastically decrease the numerical complexity, an orthogonalization procedure of the vectors used to represent the dielectric matrix has been developed. Then these approaches were applied to the calculation of the binding energy of small molecular complexes. The formulation of the correlation energy of the Møller-Plesset perturbation theory within the dielectric matrix context is also presented and tested. In parallel, calculations using numerically efficient semi-empirical methods were conducted over three molecular sets in order to test their performances regarding the binding energies by comparing them to reference values available in the literature
|
2 |
Theoretical studies of molecule-substrate interaction at complex gold and silicon oxide surfaces using surface and cluster modelsTing, Chao-Ming 11 January 2021 (has links)
The formation and patterns of a monolayer are determined by the interplay of two fundamental interactions, adsorbate-substrate and intermolecular interactions. The binding strength between adsorbate and substrate affects the mobility of the adsorbate at the surface and the stability of the complex. The intermolecular interaction plays a significant role in the monolayer patterns on the epitaxial layer of the substrate. A monolayer can be formed either by a spontaneous self-assembly, or by fabrication via atomic-layer deposition (ALD). The physical and chemical properties of the resulting monolayer have a broad array of applications in fabricating functional materials for hydrophobic or hydrophilic surfaces, biological sensors, alternating the properties of the substrate, catalysis and forming ordered layered structures. In this dissertation, the investigation focuses primarily on the influence of the surface topology on the binding behaviour of adsorbate-surface complexes. The state of the art DFT-TS method is used to simulate the sulfur-containing amino acids at complex gold surfaces and examine the relationship between the binding strengths and the binding sites with various nearest neighbouring environments. The same method is also used to determine if a chemical reaction will take place for various catalytic silicon precursors at a silicon oxide surface.
Simulating surface chemistry using the DFT-TS method requires intensive com- puting resources, including CPU use and computing time. Another focus of this dissertation is to increase the data generating speed by reducing the size of the sim- ulated systems without altering the outcome. A relatively small gold cluster is used to study the binding behaviours of small organic molecules on the cluster. The same strategy is also used to simulate the chemical reactions between various self-catalying silicon precursors and a water molecule. / Graduate / 2021-10-21
|
Page generated in 0.0467 seconds