• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 4
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 26
  • 26
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Transplante de germe dental: estudo da correlação entre posição do implante, presença de tecido ósseo no leito receptor e fase de desenvolvimento do germe transplantado com possível neoformação de tecido nervoso e vascular na polpa dental / Correlation between position of implantation, presence of bone and tooth development stage in the moment of the transplant with nervous and vascular development in transplanted teeth

Felipe Perozzo Daltoé 06 May 2010 (has links)
A odontologia moderna, mesmo usando as suas técnicas mais primorosas, na prática, ainda recupera a perda dental com implantes metálicos recobertos por coroas protéticas. Há um empenho coletivo dos cientistas em criar técnicas de desenvolvimento dental in vitro na busca por maneiras de recuperar, de maneira biológica, a ausência dental. Já é possível criar estruturas similares a dentes a partir de células-tronco de origem dental (polpa de dentes permanentes e decíduos) e não dental (células-tronco embrionárias, células-tronco da medula óssea e da crista neural) por meio de recombinação dos tecidos epiteliais e mesenquimais de germes dentais. As técnicas de reconstrução tecidual nunca estiveram tão perto do desenvolvimento da terceira dentição mas a ciência ainda tem muito a aprender no que concerne o estudo da biologia dental e engenharia de tecidos. Não basta saber como um dente se desenvolve; há de se entender como ele interage com o organismo do qual faz ou fará parte. É com esta preocupação que nos propomos a estudar se pode haver uma correlação entre o desenvolvimento do sistema nervoso e vascular de um germe dental transplantado com a posição que ele é implantado e/ou com a presença de tecido ósseo que no leito receptor. Ademais, buscamos saber se o estágio de desenvolvimento do germe dental a ser transplantado pode influenciar a formação de tecido nervoso e vascular na polpa dental ou não. Nossos resultados revelaram que o local do sítio do implante influencia diretamente o desenvolvimento dental e que isto é tempo dependente. A vascularização e a reinervação da polpa dental nos espécimes implantados nas tíbias é mais semelhante ao grupo controle que os implantados nos rins e isto independe da posição de implantação dental. Entretanto, a polpa dental dos germes implantados nos rins parece estar comumente mais sadia, conter mais odontoblastos viáveis e ser capaz de produzir tecidos mineralizados como a osteodentina. / Contemporary dentistry, even using modern techniques, still deal with missing teeth using metal implants coated by prosthetic crowns. However, there is a worldwide effort to develop a biotooth using in vitro techniques. In this way it is already possible to generate structures similar to teeth using recombination of odontogenic and non odontogenic cells in tissue engineering experiments. The transplant of the recombined cells into a host is a necessary and major step to obtain the biotooth. In this context, at the same time that the development of an appropriate sensorial and vascular system in the biotooh is required, there are many unclear questions about it. Therefore, herein we intend to analyze (I) whether may exist a correlation between the stage of development and vascular and nervous re-growth in the dental pulp after tooth transplantation; (II) if the absence or presence of bone could influence this processes or (III) if the position of implantation could change the vascular and/or nervous development in the transplanted tooth. Our results showed that the site of implantation directly alter tooth development modifying morphogenesis and expression of different vascular, perivascular and neural markers in a time dependant way. The re-growth of the vascular and neural tissue on samples transplanted to the tibia is more similar to the control group than the kidney ones and it is non dependant of the position of implantation. However, the pulp tissue of the samples transplanted under the kidney capsule seemed to be healthier as they were capable of producing mineralized tissue such as osteodentin and still had live odontoblasts.
12

New molecular mechanisms controlling dental epithelial stem cell maintenance, growth and craniofacial morphogenesis

Sun, Zhao 01 May 2016 (has links)
The regenerative tissues such as hair follicles, intestine and teeth have a particular microenvironment known as “stem cell niche” which houses stem cells and act as a signaling center to control stem cell fate. The precise and timely regulation of stem cell renewal and differentiation is essential for tissue formation, growth and homeostasis over the course of a lifetime. However, the molecular underpinning to control this regulation is poorly understood. To address this issue, we use the continuously growing mouse incisor as a model to study the gene regulatory network which controls dental epithelial stem cell (DESC) maintenance, growth and craniofacial morphogenesis. We found FoxO6, a transcription factor mainly expressed in the brain and craniofacial region, control DESC proliferation by regulating Hippo signaling. FoxO6 loss-of-function mice undergo increases in cell proliferation which finally leads to lengthening of the incisors, expansion of the face and skull and enlargement of the mandible and maxilla. We have screened three human FOXO6 single nucleotide polymorphisms which are associated with facial morphology ranging from retrognathism to prognathism. Our study also reveals that Sox2 and Lef-1, two markers for early craniofacial development, are regulated by Pitx2 to control DESC maintenance, differentiation and craniofacial development. Conditional Sox2 deletion in the oral and dental epithelia results in severe craniofacial defects, including ankyloglossia, cleft palate, arrested incisor development and abnormal molar development. The loss of Sox2 in DESCs leads to impaired stem cell proliferation, migration and subsequent dissolution of the tooth germ. On the other hand, conditional overexpression of Lef-1 in oral and dental epithelial region increases DESC proliferation and creates a new labial cervical loop stem cell compartment in dental epithelial stem cell niche, which produces rapidly growing long “tusk-like” incisors. Interestingly, Lef-1 overexpression rescues the tooth arrest defects but not the ankyloglossia or cleft palate in Sox2 conditional deletion mice. Our data also reveal that miRNA and histone remodeler are involved in regulating DESC proliferation and craniofacial morphogenesis. We describe a miR-23a/b:Hmgn2:Pitx2 signaling pathway in regulating dental epithelial cell growth and differentiation. Pitx2 activates expression of amelogenin which is the major protein component for enamel deposition. This activation can be repressed by the chromatin-associated factor Hmgn2. miR-23a and miR-23b directly target Hmgn2, leading to the release of the Hmgn2 inhibition of Pitx2 transcriptional activity and thus enhance Amelogenin production. Phenotypically, ablation of Hmgn2 in mice results in an overgrowth of incisors with increased Amelogenin expression. The findings in this study increase our current understanding of the molecular regulation of dental epithelial stem cell fate. It not only highlights new gene regulatory network that controls dental stem cell maintenance, growth and craniofacial morphogenesis, but also sheds new light on developing novel stem cell therapy or gene therapy for tooth regeneration and dental diseases.
13

A Pitx2-Irx1 regulatory network controls dental epithelial stem cell differentiation during tooth development

Yu, Wenjie 15 December 2017 (has links)
Tooth development is precisely controlled by epithelium-mesenchyme interactions, coordinated signaling pathways and associated transcription factors. Although the processes involved in tooth development are well established, details of the cellular and molecular mechanisms that control tooth development are not fully understood. One of the primary unknown mechanisms is the regulation of dental epithelial stem cells (DESCs), including DESC specification, proliferation and differentiation. In this dissertation, I have addressed this gap in knowledge by studying the role of Pituitary homeobox 2 (Pitx2) and Iroquois 1 (Irx1) in teeth at the cellular and molecular level in mice. PITX2 contains mutations of which are associated for Axenfeld-Rieger syndrome (ARS) in humans and is also required for early tooth development. All the background knowledge is included in Chapter I. In Chapter II, I describe the conditional ablation of Pitx2 in the dental epithelium using a Krt14Cre driver line (Pitx2cKO mice). Knocking out Pitx2 in teeth led to delayed epithelial invagination at bud stage and disruption of tooth morphogenesis at cap stage. At the cellular level, Pitx2 mediates DESC differentiation, daughter cell proliferation in bud stage tooth and regulates enamel knot formation in cap stage tooth. At the molecular level, Pitx2 acts as an upstream regulator of the sonic hedgehog (Shh) signaling pathway by regulating the expression of Shh in the dental epithelial signaling center during early tooth development. In addition, I demonstrated that Pitx2 directly controls the transcription of Irx1. In Chapter III, I determined the cellular and molecular mechanisms of Irx1 in mice. Irx1 general knockout mice were generated by replacing the entire Irx1 gene body with a LacZ reporter gene. Irx1 null mice are neonatal lethal and this lethality is due to pulmonary immaturity with defective surfactant protein secretion. In teeth, Irx1 is expressed in the outer enamel epithelium (OEE) and stratum reticulum (SR) and mediates DESC to OEE and SR differentiation through regulation of Forkhead box protein J1 (Foxj1) and Sex determining region Y-box9 (Sox9). In summary, I identified a Pitx2-Irx1 regulatory network that controls DESC differentiation in teeth, which provided the field with a better understanding of tooth development and tooth regeneration.
14

The molecular mechanisms of PITX2 in tooth development and enamel defects in Axenfeld-Rieger Syndrome

Li, Xiao 01 December 2013 (has links)
Patients with Axenfeld-Rieger Syndrome (ARS) present various dental abnormalities. ARS is genetically associated with mutations in the PITX2 gene, which encodes one of the earliest transcription factors to initiate tooth development. Thus, Pitx2 has long been considered as an upstream regulator of the transcriptional hierarchy in tooth development. However, it is unclear how its mutant forms cause ARS dental anomalies. In this report, we outline the transcriptional mechanism that is defective in ARS. We demonstrate that during normal tooth development Pitx2 activates Amelogenin (Amel) expression, whose product is required for enamel formation, and that this regulation is perturbed by missense PITX2 mutations found in ARS patients. We further show that Pitx2-mediated Amel activation is enhanced and controlled by co-factors and target genes of Pitx2. These co-factors include cooperative transcription factors such as Dlx2 and FoxJ1; chromatin-associated remodeler factor Hmgn2; and Wnt signaling components such as Lef-1, β-catenin and Dact2. We also unveil a novel Pitx2 target gene Irx1 that functions in dental epithelium differentiation. Consistent with a physiological significance to these modulations, we show that FoxJ1, Dact2, Irx1 knockout mice and K14-Hmgn2 transgenic mice display various types of amelogenesis defects including enamel hypoplasia - consistent with the human ARS phenotype. Collectively, these findings define transcriptional mechanisms and multi-level regulations involved in normal tooth development and shed light on the molecular underpinnings of the enamel defect observed in ARS patients who carry PITX2 mutations. Moreover, our findings validate the etiology of the enamel defect in novel mouse models of enamel hypoplasia. The impact of this study on current understanding of the dental epithelium development and the translational value lie in the gene network we identified. By manipulating components of the network, pluripotent dental cells can be reprogrammed and serve as new source for tooth regeneration. Our findings brought insights of novel gene therapy approach that can alleviate the dental problems of patients with ARS and other developmental anomalies.
15

An Epithelial-Mesenchymal Gene Regulatory Network that Controls Tooth Organogenesis

O'Connell, Daniel Joseph January 2011 (has links)
Many vertebrate organs form via the sequential, reciprocal exchange of signaling molecules between juxtaposed epithelial (E) and mesenchymal (M) tissues. For example, the instructive signaling potential for tooth development (odontogenesis) resides in the dental epithelium at the initiation-stage, and subsequently shifts to the dental mesenchyme one day later at the bud-stage. However, the properties of the gene regulatory networks (GRNs) that control the signaling dynamics during epithelial-mesenchymal (E-M) interactions in organogenesis are largely unknown. This dissertation describes an interdisciplinary effort between developmental and systems biology to elucidate the E-M GRN that controls early odontogenesis. The results provide a molecular mechanism for the longstanding paradigm of sequential, reciprocal E-M tissue interactions in development. We generated large-scale spatiotemporal gene expression data for the developing mouse tooth. Surprisingly, the shift in signaling molecule expression from E to M is accompanied by a striking concordance in genome-wide expression changes in both E-M compartments as development proceeds. We hypothesized that since diffusible signaling molecules can act on either E or M independent of their tissue site of synthesis, signaling molecules are uniquely able to simultaneously synchronize and couple the transcriptional dynamics and hence the developmental progression of E and M. To identify the unifying mechanism behind concordant E and M genome-wide expression changes in the face of the discordant expression changes in signaling molecule expression, we developed a novel probabilistic technique that integrates regulatory evidence from microarray gene expression data and the literature to determine the E-M GRN for early tooth development. This GRN contains a uniquely configured E-M Wnt/Bmp feedback circuit in which the Wnt and Bmp signaling pathways in E cross-regulate the expression of Wnt and Bmp4 signaling molecules, whereas both pathways jointly regulate Bmp4 expression in M. We validated the Wnt/Bmp feedback circuit in vivo using compound genetic mutations in mice that either short-circuit or break the circuit, and used mathematical modeling to show how the structure of the Wnt/Bmp feedback circuit can account for reciprocal signaling dynamics. Collectively, these results provide a simple mechanistic framework for how simultaneous signal transduction in E-M compartments can account for the signaling dynamics in organogenesis.
16

Developmentally-Inspired Engineering Of An Inductive Biomaterial for Odontogenesis

Hashmi, Basma 04 June 2016 (has links)
Increasing demands for organ transplants and the depleting supply of available organs has heightened the need for alternatives to this growing problem. Tissue engineers strive to regenerate organs in the future; however doing so requires a fundamental understanding of organ development and its key processes. The first chapter of this thesis provides a brief overview of developmentally inspired engineering, specifically in the context of how I approach this challenge in this thesis. The second chapter provides an in depth review of current and past work focused on organ regeneration from a developmentally-inspired perspective, and using tooth formation as a model system. The third chapter describes the design and fabrication of a thermoresponsive polymer inspired by an embryonic induction mechanism, and demonstrates its ability to induce tooth differentiation in vitro and in vivo. This is effectively a 3D `shrink wrap'-like polymer sponge that constricts when it is warmed to body temperature and induces compaction of cells contained within it, hence recapitulating the mesenchymal condensation process that has been shown to be a key induction mechanism that triggers formation of various epithelial organs, including tooth in the embryo. The fourth chapter describes the fabrication of a novel microarray screening platform consisting of a unique set of ECM proteins (collagen VI, tenascin, and combination of the two at different coating densities) on an array of soft substrates (~130-1500 Pa) that are physiologically relevant to the embryonic microenvironment. This technology demonstrated the capacity to analyze combinatorial effects of these ECM proteins and soft substrates on cell density, cell area and odontogenic differentiation in murine mandible embryonic mesenchymal cells. The fifth chapter of this thesis summarizes and discusses the advantages, limitations and future potential of the findings described in the previous two chapters in the context of organ engineering and regeneration. Taken together, the work and results presented in this thesis have led to the development of new insights, approaches and tools for studying organ formation and potentially inducing organ regeneration, which are inspired by key developmental mechanisms used during embryonic organ formation. / Engineering and Applied Sciences
17

Projevy odontogeneze zevně od budoucí funkční dentice u experimentálního modelu / The signs of odontogenesis externally to the prospective functional dentition in the experimental model

Fábik, Jaroslav January 2017 (has links)
6 Abstract The development of the mouse tooth primordium is an important model for studying odontogenesis, as well as general organogenesis. The development of the mouse lower incisor is of remarkable interest. The epithelial anlage of the mouse lower incisor is interconnected with the vestibular anlage via the epithelial bridges. According to some authors, the epithelial bridges represent an area, where the transient rudimentary incisor germ appears. From a morphological point of view, the first sign of ongoing epithelial-mesenchymal interactions during early odontogenesis is the thickening of oral epithelium. From a molecular point of view, it is the expression of the Shh, Eda, Edar, Pitx2, Bmp2, Bmp4 and Dlx2 genes. Except for the transcription domain, representing the proper signalling centre of a developing prospective incisor, a transient transcription domain, localized anteriorly and superficially, appears in the odontogenic zone of the epithelium during early development. The anterior transcription domain originates in the area of epithelial bridges, and according to some authors, from an evolutionary point of view, it corresponds with the signalling centre of the rudimentary incisor germ. The aim of this diploma thesis was to compare the temporospatial dynamics of SHH and EDA protein expression in...
18

Antagonistic functions of USAG-1 and RUNX2 during tooth development. / 歯の発生におけるUSAG-1とRUNX2の拮抗作用

Togo, Yumiko 23 January 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第20078号 / 医博第4171号 / 新制||医||1018(附属図書館) / 33194 / 京都大学大学院医学研究科医学専攻 / (主査)教授 妻木 範行, 教授 開 祐司, 教授 松田 秀一 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
19

Časný vývoj dentice u myší kmene Tabby / Early tooth development of Tabby mice

Smrčková, Lucie January 2012 (has links)
The developing mouse dentition is a very useful tool to study molecular regulation of odontogenesis and also organogenesis. The embryonic mouse dentition comprises developing functional tooth primordia as well as rudimentary tooth primordia. These rudiments arrest their growth during development and either degenerate or become a part of a functional tooth. Mice with gene defects also allow elucidation of a function of genes, their products and signalling pathways. The protein ectodysplasin is essential for development of ectodermal derivatives - skin, hair, glands and teeth. The Tabby mice have a mutation in the Eda gene, which encodes the protein ectodysplasin, and they display a number of dentition anomalies. Early development of the lower jaw dentition in Tabby embryos has been already morphologically described. As a prerequisite for understanding regulatory mechanisms of odontogenesis in Tabby mice, it is also necessary to map the spatiotemporal dynamics of signalling centres that express Shh in both the rudimentary and functional tooth primordia. The aim of this thesis was to compare the signalling centres based on the Shh expression and its spatiotemporal dynamics in the lower jaw of Tabby and WT mouse embryos. Then the Shh data were correlated with known morphological data to clarify the...
20

Úloha rudimentárních struktur v odontogenezi. / The role of rudimentary structures in odontogenesis.

Lochovská, Kateřina January 2017 (has links)
In vivo organogenesis is based on the temporal-spatial developmental processes that depend on cell behaviour, for example on their growth, migration, differentiation and intercellular interactions. Such behaviour is regulated by appropriate transient expression of various signalling molecules. Despite the significant advances in therapeutic strategies, the secret of the development of the biological replacement of a damaged or missing tooth has not yet been revealed. In this context, animal models provide a powerful tool for studying tooth normogenesis and pathogenesis in both basic and applied research. Early development of the tooth shares similar morphological and molecular features with other ectodermal organs. At the same time, these features are largely preserved also between species, which is advantageous for the use of model organisms. The dental formula of both: the human and the mouse are reduced against a common ancestor, but both groups of organisms evince simple as well as multicusped teeth. In both, structures called rudimentary were found. These structures are suppressed during ontogenetic development and generally they are not attributed to essential functions. That is why we aimed to study dental rudiments in detail and reveal their function in odontogenesis. This work presents new...

Page generated in 0.0645 seconds