• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Aspects fonctionnels, structuraux et évolutifs de la réponse transcriptionnelle à l’auxine / Functional, structural and evolutionary aspects of the auxin transcriptional response

Martín-Arevalillo, Raquel 27 November 2017 (has links)
L’auxine est une hormone végétale impliquée dans presque toutes les étapes du développement des plantes, de la formation de l’embryon jusqu’à la floraison, déterminant la position des organes et donc la structure de la plante. Comme pour les autres hormones, la perception de l’auxine est suivie par une transduction du signal qui produit une série de changements dans les cellules végétales dont des régulations transcriptionnelles. Cette thèse est divisée en 3 chapitres, chacun d’eux étant focalisé sur des aspects structuraux, moléculaires et évolutifs de différentes protéines impliquées dans la régulation des gènes de réponse à l’auxine.Nous avons tout d’abord centré nos études sur TOPLESS (TPL), un corépresseur qui agit au niveau de la répression des gènes de réponse à l’auxine, mais aussi dans d’autres processus végétaux compte tenu de son interaction avec de nombreux répresseurs transcriptionnels. Nous avons déterminé la structure de la partie N-terminale de TPL et compris comment TPL interagit avec différents partenaires au niveau d’un même site de liaison. Nous avons alors démontré que TPL forme un tétramère à l’aide d’une surface de tétramérisation constituée par un nouveau domaine, le domaine CRA, qui fait aussi partie du site de liaison. Les résidus impliqués dans la tétramérisation et l’interaction avec des partenaires sont très conservés depuis des centaines de millions d’années montrant ainsi l’importance du rôle de TPL depuis l’origine des plantes. Enfin, les similarités de structure entre TPL et d’autres corépresseurs qui possèdent des domaines similaires mais possédant une fonction différente montrent un bel exemple de la manière dont l’évolution joue avec des domaines protéiques pour créer de nouvelles fonctions.Nous avons ensuite étudié les préférences de liaison à l’ADN des facteurs de transcription de la réponse à l’auxine (ARF). Pour cela nous avons utilisé une combinaison d’analyses bio-informatiques de données de DAP-seq sur la liaison des ARFs sur le génome, des tests d’interaction ADN-protéine in vitro et de la modélisation de structures. Nos résultats indiquent que les différents ARFs ont des sites préférentiels de liaison sur le génome et que ces préférences sont déterminées par l’orientation et l’espacement entre motifs de liaison. Enfin, ces études suggèrent qu’en fonction du site de liaison, les ARFs pourraient se lier avec différentes conformations à l’aide de surfaces de dimérisation qui ne sont pas encore décrites. Ces résultats permettent d’expliquer comment différents ARFs coexprimés dans la même cellule peuvent fonctionner ensemble pour contribuer à une réponse transcriptionnelle à l’auxine spécifique et robuste.Finalement, nous avons remonté le temps pour positionner l’origine de la voie de signalisation de l’auxine chez les plantes. Pour cela, nous avons recherché des homologues des protéines de la voie de signalisation de l’auxine dans des algues vertes charophytes, les ancêtres les plus lointains (450 Millions d’années) des plantes. Nous avons alors trouvé un homologue des ARFs et TPL chez les premières algues multicellulaires (Chlorokybus atmophyticus). La caractérisation biochimique de l’ARF de C. atmophyticus indique qu’il partageait déjà les mêmes propriétés que les ARFs des plantes terrestres et était aussi capable d’interagir avec TPL comme certains ARFs. L’absence d’homologues du récepteur de l’auxine chez ces algues primitives indique cependant que la dépendance à l’auxine aurait été acquise plus tard avec l’apparition du système corécepteur TIR1/AFB-Aux/IAA après la divergence des charophytes vers les plantes terrestres. / Auxin is a plant hormone implicated in almost all plant developmental stages, since the embryo formation till flowering, determining the position of the organs in the plant and thus, its whole structure. As for any other hormone, auxin perception is followed by a signal transduction that finishes in a series of changes in a plant cell, including transcriptional changes. This thesis is divided in 3 chapters, each with a focus on the structural, molecular and evolutionary aspects of different proteins involved in the regulation of auxin genes response.First, we focused our studies on TOPLESS (TPL), a co-repressor implicated, not only in auxin responsive genes repression, but also in many other plant processes due to its interactions with numerous transcriptional repressors in plants. Our determination of the TPL N-terminal structure allowed us to understand that TPL can interact with different partners through the same binding site. Moreover, it revealed that TPL is a tetrameric protein, with the tetramerization interface formed by a newly identify domain, the CRA domain, that is also part of the binding site. The high residues conservation in both tetramerization interface and TPL binding site since m.y.a indicates the importance of TPL role since the origin of plants. This work also shows that the structural similarities between TPL and other co-repressor with similar domains but different function nicely exemplify how evolution plays with common features for creating new functions.Second, we studied ARF proteins, the transcription factors of the auxin transcriptional response, with a focus on their DNA binding preferences. For this, we used a combination of bioinformatic analyses of DAP-seq ARFs genomic binding, with in vitro DNA binding tests and structure modelling. Our results point out that different ARFs can have different preferential binding sites within the genome, with these preferences being determined by the orientation and spacing of the binding motifs. Moreover, our studies suggest that depending on the binding site, ARFs could bind with different conformations using dimerization interfaces not yet discovered. These results can explain how different ARFs co-expressed inside a plant cell can collaborate to the specificity and robustness of auxin transcriptional response by differential bindings to the genome.Finally, we travelled back in time to position the origin of auxin signalling pathway in the evolution of plants. Here we looked for protein homologues of the auxin signalling pathway in charophyte green algae, the most ancient plants ancestor (450 M years). This search retrieved an ARF and a TPL homologue in the first multicellular charophyte algae (Chlorokybus atmophyticus). The biochemical characterization of C. atmophyticus ARF indicated that it presented already the same properties of the ARFs from land plants and that it was able to interact with TPL protein, as it is the case for some ARFs. The absence of auxin receptor homologues in these primitive algae indicates however that auxin-dependency appeared with the acquisition of TIR1/AFB-Aux/IAA coreceptor system, after charophytes divergence into land plants.
2

Auxin-mediated fruit development and ripening : new insight on the role of ARFs and their action mechanism in tomato (S. lycopersicum) / L’auxine dans le développement et la maturation des fruits : rôle des ARF et leur mécanisme d'action chez la tomate (S. lycopersicum)

Hao, Yanwei 14 November 2014 (has links)
L'auxine est une hormone végétale qui coordonne plusieurs processus de développement des plantes à travers la régulation d'un ensemble spécifique de gènes. Les Auxin Response Factors (ARF) sont des régulateurs transcriptionnels qui modulent l'expression de gènes de réponse à l’auxine. Des données récentes montrent que les membres de la famille des ARF sont impliqués dans la régulation du développement des fruits de la nouaison à la maturation. L'objectif principal de la thèse est d’étudier la part qui revient aux ARF dans le contrôle du développement et de la maturation des fruits et d’en comprendre les mécanismes d’action. L’analyse des données d’expression disponibles dans les bases de données a révélé que, parmi tous les ARF de tomates, SlARF2 affiche le plu haut niveau d'expression dans le fruit avec un profil distinctif d’expression associé à la maturation. Nous avons alors entrepris la caractérisation fonctionnelle de SlARF2 afin d’explorer son rôle dans le développement et la maturation des fruits. Deux paralogues, SlARF2A et SlARF2B, ont été identifiés dans le génome de la tomate. Nous avons montré que l’expression de SlARF2A dans le fruit est régulée par l'éthylène tandis que celle de SlARF2B est induite par l'auxine. La sous-expression de SlARF2A, comme celle de SlARF2B, entraine un retard de maturation alors que l’inhibition simultanée des deux paralogues conduit à une inhibition plus sévère de la maturation suggérant une redondance fonctionnelle entre les deux paralogues lors de la maturation des fruits. Les fruits présentant une sous-expression des gènes SlARF2 produisent de faibles quantités d'éthylène, montrent une faible accumulation de pigments et une plus grande fermeté. Le traitement avec de l'éthylène exogène ne peut pas inverser les phénotypes de défaut de maturation suggérant que SlARF2 pourrait agir en aval de la voie de signalisation de l'éthylène. L'expression des gènes clés de biosynthèse et de signalisation de l'éthylène est fortement perturbée dans les lignées sous-exprimant SlARF2 et les gènes majeurs qui contrôlent le processus de maturation (RIN, CNR, NOR, TAGL1) sont sensiblement sous-régulés. Les données suggèrent que SlARF2 est essentiel pour la maturation des fruits et qu’il pourrait agir au croisement des voies de signalisation de l'auxine et de l'éthylène. Dans le but de mieux comprendre les mécanismes moléculaires par lesquels les ARF régulent l'expression des gènes de réponse à l'auxine, nous avons étudié l'interaction des SlARFs avec des partenaires protéiques ciblés, principalement les co-répresseurs de type Aux/IAA et Topless (TPL) décrits comme les acteurs clés dans la répression des gènes dépendant de la signalisation auxinique. Une fois les gènes codant pour les membres de la famille TPL de tomate isolés, une approche double hybride dans la levure a permis d’établir des cartes exhaustives d'interactions protéine-protéine entre les membres des ARFs et des Aux/IAA d’une part et les ARFs et les TPL d’autre part. L'étude a révélé que les Aux/IAA interagissent préférentiellement avec les SlARF activateurs et qu’à l’inverse les Sl-TPL interagissent uniquement avec les SlARF répresseurs. Les données favorisent l'hypothèse que les ARF activateurs recrutent les Sl-TPL via leur interaction avec les Aux/IAA, tandis que les ARF répresseurs peuvent interagir directement avec les Sl-TPL. Les études d’interactions ont permis également d’identifier de nouveaux partenaires comme les protéines VRN5 et LHP1, composantes des complexes Polycomb PRC impliqués dans la repression par voie épigénétique de la transcription par modification de l'état de méthylation des histones. Au total, le travail de thèse apporte un nouvel éclairage sur le rôle et les mécanismes d'action des ARF et identifie SlARF2 comme un nouvel élément du réseau de régulation contrôlant le processus de maturation des fruits chez la tomate. / The plant hormone auxin coordinates plant development through the regulation of a specific set of auxin-regulated genes and Auxin Response Factors (ARFs) are transcriptional regulators modulating the expression of auxin-response genes. Recent data demonstrated that members of this gene family are able to regulate fruit set and fruit ripening. ARFs are known to act in concert with Aux/IAA to control auxin-dependent transcriptional activity of target genes. However, little is known about other partners of ARFs. The main objective of the thesis research project was to gain more insight on the involvement of ARFs in fruit development and ripening and to uncover their interaction with other protein partners beside Aux/IAAs. Mining the tomato expression databases publicly available revealed that among all tomato ARFs, SlARF2 displays the highest expression levels in fruit with a marked ripening-associated pattern of expression. This prompted us to uncover the physiological significance of SlARF2 and in particular to investigate its role in fruit development and ripening. Two paralogs, SlARF2A and SlARF2B, were identified in the tomato genome and transactivation assay in a single cell system revealed that the two SlARF2 proteins are nuclear localized and act as repressors of auxin-responsive genes. In fruit tissues, SlARF2A is ethylene-regulated while SlARF2B is auxin-induced. Knock-down of SlARF2A or SlARF2B results in altered ripening with spiky fruit phenotype, whereas simultaneous down-regulation of SlARF2A and SlARF2B leads to more severe ripening inhibition suggesting a functional redundancy among the two SlARF2 paralogs during fruit ripening. Double knock-down fruits produce less climacteric ethylene and show delayed pigment accumulation and higher firmness. Exogenous ethylene treatment cannot reverse the ripening defect phenotypes suggesting that SlARF2 may act downstream of ethylene signaling. The expression of key ethylene biosynthesis and signaling genes is dramatically disturbed in SlARF2 down-regulated fruit and major regulators of the ripening process, like RIN, CNR, NOR, TAGL1, are under-expressed. The data support the notion that SlARF2 is instrumental to fruit ripening and may act at the crossroads of auxin and ethylene signaling. Altogether, while ethylene is known as a key hormone of climacteric fruit ripening, the ripening phenotypes associated with SlARF2 down-regulation bring unprecedented evidence supporting the role of auxin in the control of this developmental process. To further extend our knowledge of the molecular mechanism by which ARFs regulate the expression of auxin-responsive genes we sought to investigate interactions SlARF and putative partners, mainly Aux/IAAs and Topless co-reppressors (TPLs) reported to be key players in gene repression dependent on auxin signaling. To this end, genes encoding all members of the tomato TPL family were isolated and using a yeast-two-hybrid approach comprehensive protein-protein interaction maps were constructed. The study revealed that Aux/IAA interact preferentially with activator SlARFs while Sl-TPLs interact only with repressor SlARFs. The data support the hypothesis that activator ARFs recruit Sl-TPLs co-repressors via Aux/IAAs as intermediates, while repressor ARFs can physically interact with Sl-TPLs. Further investigation indicated that SlARFs and Sl-TPLs can interact with polycomb complex PRC1 PRC2 components, VRN5 and LHP1, known to be essential players of epigenetic repression of gene transcription through the modification of histones methylation status. These data establish a potential link between ARFs and epigenetic regulation and thereby open new and original perspectives in understanding the mode of action of ARFs. Altogether, the thesis work provides new insight on the role of ARFs and their underlying action mechanisms, and defines SlARF2 as a new component of the regulatory network controlling the ripening process in tomato.

Page generated in 0.0812 seconds