• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 303
  • 114
  • 45
  • 34
  • 29
  • 9
  • 9
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • Tagged with
  • 709
  • 121
  • 83
  • 75
  • 52
  • 51
  • 49
  • 44
  • 38
  • 34
  • 31
  • 30
  • 27
  • 27
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

Aspects of heterogeneity : effects of clear-cutting and post-harvest extraction of bioenergy on plants in boreal forests

Åström, Marcus January 2006 (has links)
Abstract. The objectives of this thesis are to evaluate (1) the influence of slope aspect on boreal plant responses to clear-cutting and (2) the effects of post-harvest extraction of bioenergy (logging residues or slash) on plant composition, richness and performance in clear-cuts. Such insight is essential for understanding changes in species composition and richness in response to clear-cutting and application of intensified harvesting systems. The focus is on productive and managed spruce dominated forests and focal organisms are mosses, liverworts (i.e. bryophytes) and vascular plants. Space-for-time substitution studies were performed in south- and north-facing slopes located in 10 forests and 10 adjacent clear-cut stands in central Sweden. Differences between forests and clear-cuts were interpreted as effects of clear-cutting. The results show that the response of all three focal groups differed between aspects. More species were lost in south-facing slopes and clear-cutting reduced species richness of liverworts as well as of bryophytes and vascular plants associated with sheltered habitats. By contrast, clear-cutting caused no reduction in any group and more species were added in north-facing slopes. As a result north-facing clear-cuts generally had higher species richness than their forest counterparts. The disparate patterns in species’ response between aspects were most likely caused by initial microclimatic differences and a greater microclimatic change in south-facing slopes, in response to clear-cutting. A paired comparative study of conventionally harvested (i.e. slash left) and slash-harvested clear-cut stands was performed 5-10 years after clear-cutting in south-central Sweden. Both the species composition and the richness of mosses and liverworts were affected by slash harvest, whereas the composition of vascular plants was not. Slash harvest also reduced richness of mosses and liverworts associated with forests and organic substrates (e.g. dead wood and litter). Species richness of vascular plants and bryophytes associated with inorganic substrates (i.e. mineral soil) was unchanged. Differences between conventionally harvested stands and slash-harvested stands were most likely a result of reduced cover of organic material reducing substrate availability and shelter in the latter. Increased mechanical disturbance in slash-harvested stands that destroys remnant forest vegetation and favours pioneers may also play a role. A bryophyte transplant experiment was performed in seven clear-cuts in central Sweden and monitored over one vegetation period. The results show that logging residues (or slash) and forest edges may shelter ground-dwelling bryophytes by buffering the clear-cut microclimate. In conclusion, both slope aspect and extraction of forest bioenergy affect plant survival in clear-cut boreal forests. As surviving plant populations facilitate re-colonisation, north-facing slopes and conventionally harvested clear-cuts (i.e. slash left) may potentially recover faster than south-facing slopes and slash-harvested clear-cuts.
252

Interfacial kinetic ski friction

Kuzmin, Leonid January 2010 (has links)
It is no doubt, that the ski glide over the snow is a very complicated object of research. However, ski glide is just a one area of many other areas of human knowledge. As a rule, the scientists and practitioners, who work in these areas, operate with some publicly expressed more or less solid hypotheses. These researchers work with one hypothesis until another and a better one comes up. Our literature studies and our own observations regarding modern skis preparations, did not give us any solid hypotheses, which are able to explain the actual form and content of this procedure. The present work is an attempt to reveal such hypotheses. Conclusion: To achieve an optimal glide on skis with the base (the ski sole) made of some high hydrophobic durable polymer, e.g. UHMWPE, PTFE; we only have to create an adequate topography (texture) on the ski running surface, adequate to the actual snow conditions.
253

Understanding the role topographical features play in stimulating the endogenous peripheral nerve regeneration across critically sized nerve gaps

Mukhatyar, Vivek 11 November 2011 (has links)
Severe traumatic injuries and surgical procedures like tumor resection often create peripheral nerve gaps, accounting for over 250,000 injuries in the US annually. The clinical "gold standard" for bridging peripheral nerve gaps is autografts, with which 40-50% of patients regain useful function. However, issues including their limited availability and collateral damage at the donor site limit the effectiveness and use of autografts. Therefore, it is critical to develop alternative bioengineered approaches that match or exceed autograft performance. With the use of guidance channels, the endogenous regeneration process spontaneously occurs when successful bridging of short gaps (< 10mm) occurs, but fails to occur in the bridging of longer gaps (≥15mm). Several bioengineered strategies are currently being explored to bridge these critical size nerve gaps. Other labs and ours have shown how filler materials that provide topographical cues within the nerve guides are able to enhance nerve growth and bridge critical length gaps in rats. However, the mechanism by which intra-luminal fillers enhance nerve regeneration has not been explored. The main goal of this dissertation was to explore the interplay between intra-luminal scaffolds and orchestrated events of provisional fibrin matrix formation, glial cell infiltration, ECM deposition and remodeling, and axonal infiltration - a sequence we term the 'regenerative' sequence. We hypothesized that the mechanism by which thin films with topographical cues enhance regeneration is by serving as physical 'organizing templates' for Schwann cell infiltration, Schwann cell orientation, extra-cellular matrix deposition/organization and axon infiltration. We demonstrate that aligned topographical cues mediate their effects to the neuronal cells through optimizing fibronectin adsorption in vitro. We also demonstrate that aligned electrospun thin films are able to enhance bridging of a critical length nerve gap in vivo by stabilizing the provisional matrix, creating a pro-inflammatory environment and influencing the maturation of the regenerating cable leading to faster functional recovery compared to smooth films and random fibers. This research will advance our understanding of the mechanisms of peripheral nerve regeneration, and help develops technologies that are likely to improve clinical outcomes after peripheral nerve injury.
254

Development of an Optical Brain-computer Interface Using Dynamic Topographical Pattern Classification

Schudlo, Larissa Christina 26 November 2012 (has links)
Near-infrared spectroscopy (NIRS) in an imaging technique that has gained much attention in brain-computer interfaces (BCIs). Previous NIRS-BCI studies have primarily employed temporal features, derived from the time course of hemodynamic activity, despite potential value contained in the spatial attributes of a response. In an initial offline study, we investigated the value of using joint spatial-temporal pattern classification with dynamic NIR topograms to differentiate intentional cortical activation from rest. With the inclusion of spatiotemporal features, we demonstrated a significant increase in achievable classification accuracies from those obtained using temporal features alone (p < 10-4). In a second study, we evaluated the feasibility of implementing joint spatial-temporal pattern classification in an online system. We developed an online system-paced NIRS-BCI, and were able to differentiate two cortical states with high accuracy (77.4±10.5%). Collectively, these findings demonstrate the value of including spatiotemporal features in the classification of functional NIRS data for BCI applications.
255

Long-term field-scale transport of a chloride tracer under transient, semi-arid conditions

Woods, Shelley Anne 24 August 2005
Field-scale transport through unsaturated soil is influenced by surface and subsurface boundary conditions, and the spatial variability of state soil variables. The objective of this thesis is to examine the relative importance of the spatial redistribution of surface water versus spatial variability of soil properties on long-term transient water flow and transport under semi-arid conditions. The field-scale transport (34 yr) of a surface applied tracer (chloride), spatial variability of other pedogenic tracers, and surface water redistribution over a 19 mo fallow period were measured in a catchment basin. In 1966 and 1971, a chloride tracer (KCl) was surface applied to plots (6.1 m x 90 m, Chernozemic soil) near Saskatoon, Saskatchewan. In 2000 and 2001, 262 soil cores were taken along and perpendicular to one KCl strip. Soil layering at each core was recorded and samples were analysed for chloride concentration, electrical conductivity, bulk density and water content. Sulphate and nitrate concentrations were measured on selected cores. The site is level by common definitions, with a very slight concave depression (1.8% grade) midway along the KCl strip and a slight grade (¡Ü2.1%) perpendicular to the KCl strip. Measured water recharge indicated slight differences in surface slope had a marked effect on redistribution of water and spatial distribution of the chloride tracer. An estimated 90% of redistributed water was subsequently used by plants and 10% resulted in an increase in deep drainage. A varved layer had a strong influence on the subsurface redistribution of water and chloride below the root zone. There were sharp horizontal transitions between areas of slow and faster transport, which corresponded to sharp increases in catchment area and water recharge. Small surface depressions, which controlled pedogenic transport and soil formation, have been filled in by tillage translocation. Spatial variability of soil horizon thickness (and associated hydraulic properties) had little effect on transport of chloride after 34 yr. Computer simulations also suggest substantial surface redistribution of precipitation and snowmelt. In contrast to the measured chloride data, the model was sensitive to changes in hydraulic properties and horizon thickness in the root zone. Surface water redistribution was the primary factor controlling long-term transport.
256

Rip Channel Morphodynamics at Pensacola Beach, Florida

Labude, Daniel 14 March 2013 (has links)
80% of all lifeguard related rescues along the beaches of northwest Florida are believed to be related to rip currents. A rip current is the strong flow of water, seaward extending from the beach to the breaker line. It has previously been shown that there are rip current hot spots at Pensacola Beach, forced by a ridge and swale topography offshore, but the annual evolution/behavior of these hotspots (i.e. location, size, frequency, and orientation) have not been examined in detail. Remote imagery from Casino Beach was rectified to a planar view in order to examine the rip channel characteristics. These characteristics were analyzed to determine variations and patterns on a daily, monthly, and seasonal basis and in relation to reset storms, wind and wave characteristics, and the beach states of Casino Beach in order to characterize the rip development and variation throughout a year. Beach states and rip configurations were impacted by many frontal storms and one tropical storm, which were classified as a reset storm when reconfigurations of the beach state and rips occurred. Given sufficient time between reset storms, the bar migrated onshore in a manner consistent with the Wright and Short (1984) model, transitioning from LBT, to RBB, and finally to TBR state. The lack of reset storms after March 2010 resulted in a large frequency of observed rip channels (64) between April and May. It is shown that these rip channels are clustered into 7 statistically significant groups based on their location alongshore at the 95 % confidence interval. It is argued that the rip channel clusters are a direct result of the wave forcing caused by the ridge and swale topography. This situation causes the bar to move onshore that without interruption of a reset storm will attach at certain locations creating a transverse bar and rip morphology. The bar appears to attach to the beach at consistent locations throughout the year creating similar rip locations and subsequently the rip clusters. The risk posed to beach users by these rip currents is concentrated in certain locations which are persistent throughout the year.
257

Relationship Between Settlement Location And Morphological Landform: A Gis Method Applied To Cankiri Province

Surmeli, Biricik Gozde 01 July 2003 (has links) (PDF)
This study aims to develop a method to investigate the relationship between settlement locations and the morphological landforms using geographical information systems (GIS). The method is applied to &Ccedil / ankiri province, a mountainous terrain, which is covered in seventy-seven sheets of topographic maps at 1:25.000 scale. Three databases are created and used in this study: 1) Settlement database comprising various topographic and landform attributes of 891 settlements, 2) Morphological landform database composed of 4042 landform polygon elements digitized from 1:25.000 topographic maps, and 3) Topographic database containing the digital elevation model of the area and its derivatives. The first step in the algorithm is to classify the area into four main landform classes, namely, valley, slope, flood and top. Unsuitable landforms are then clipped out based on the thresholds derived from three topographic properties (elevation, slope and aspect). Accordingly, about 2 % of the settlements and 12 % of the area are removed. The relationship is investigated using the percentages of remaining settlements and landform classes. Further analyses such as position of the settlement within the landform polygon and type of the nearest landforms are carried out for final interpretation. Following conclusions are reached on the relationship between settlement location and morphological landforms: - Percentages of settlements for flood, valley, slope and top are 8.37, 27.52, 58.60 and 5.50, respectively. Considering the percentages of the landforms provided in the area, however, valley is the most preferred landform followed by flood type. Slope and top landforms are less preferred. About 86 % of the settlements are concentrated along valley-slope boundary. - Morphological boundaries of flood and top landforms are consistent with the settlement zones. The valley-slope boundary, on the other hand, which is the most populated area, cross-cut the settlements zones.
258

Correlation between Corneal Radius of Curvature and Corneal Eccentricity

Fredin, Patrik January 2013 (has links)
Aim: The primary aim of this study was to find if there is any correlation between the corneal radius of curvature and its eccentricity. Method: 45 subjects participated in this study, 24 emmetropes, 18 myopes and three hyperopes. All subjects were free of ocular abnormalities and had no media opacities. All the subjects had normal ocular health and good visual acuity of 1.0 or better for both distance and near. The values for eccentricity and corneal radius of curvature were obtained by using a Topcon CA-100F Corneal Analyzer. Results: For the 4.5 mm zone the only significant correlation between corneal radius of curvature and eccentricity was obtained for the mean of the meridian (p = 0.007). On the other hand, we found no significant correlation for the average of two meridians or for meridian 1 and meridian 2 separately in the 8.0 mm zone. Conclusions: We found no correlation between the corneal radius of curvature and the eccentricity for both zones. In addition, no correlation could be found between the spherical equivalent of the refractive errors and the corneal eccentricity. The reason for not finding any significant correlation between the two entities could be due to factors such as smaller sample size and poor distribution of refractive errors in the sample. Moreover, there may be other factors that could influence the overall corneal shape like eye shape, axial length and corneal diameter, which was not evaluated in this study.
259

BIOMECHANICAL ALTERATION OF CORNEAL MORPHOLOGY AFTER CORNEAL REFRACTIVE THERAPY

Lu, Fenghe January 2006 (has links)
<strong>Purpose:</strong> Although orthokeratology (non-surgical corneal reshaping, Corneal Refractive Therapy, CRT®) has been used for almost a half century, contemporary CRT's outcomes and mechanisms still require investigation. A series of studies was designed to examine different aspects of non-surgical corneal reshaping for myopic and hyperopic corrections, including the efficacy and stability of this procedure, the effect of the lens material characteristics (Dk/t), and the corneal or superficial structural change (e. g. corneal/epithelial thickness) in corneal reshaping. <br /> <strong>Methods:</strong> In the CRT® for myopia (CRT1) study, 20 myopes wore CRT® lenses on one eye and control lenses on the contralateral eye (eye randomized) for one night while sleeping. Corneal topography and refractive error were measured the night prior to lens insertion, immediately after lens removal on the following morning and at 20 and 60 minutes and 3, 6 and 12 hours later. In the CRT® for hyperopia (CRTH) study, 20 ametropes wore CRT®H lenses on one eye for one night while sleeping, the contralateral eye (no lens wear) served as control (eye randomized). Corneal topography, aberrations and refractive error were measured the night prior to lens insertion, immediately after lens removal on the following morning and at 1 and 3, 6, 12 and 28 hours later. In the relatively long term (4 weeks) CRT® for myopia (CRT2) study, 23 myopes wore CRT® lenses overnight and removed their lenses on awakening. Visual Acuity (VA), subjective vision, refractive error, aberrations, and corneal topography were measured at baseline, immediately after lens removal on the first day and 14 hours later, and these measurements were repeated on days 4, 10, and 28. The treatment zone size was demarcated by the change in corneal curvature from negative to positive and vice versa, using tangential difference maps from the corneal topographer. In the study of effects of Dk/t on CRT® for myopia (CRTHDK), 20 myopic subjects were fit with Menicon Z (MZ) lenses (Dk/t=90. 6, Paragon CRT®) on one eye and an Equalens II (EII) CRT® lenses (Dk/t=47. 2) on the contralateral eye (eye randomized). Corneal topography, refractive error and aberrations were measured before lens insertion (baseline), and the following day after overnight lens wear, on lens removal and 1, 3, 6, 12 hours later. In the study of short term effects of CRT® for myopia and hyperopia (STOK), 20 ametropes wore CRT® and CRT®H lenses in a random order on one eye (randomly selected). The lenses were worn for 15, 30 and 60 minutes (randomly ordered, with each period taking place on a different day). Refractive error, aberrations, corneal topography, and corneal/epithelial thickness (using OCT) were measured before and after lens wear. The measurements were performed on the control eyes at 60 minutes only. <br /> <strong>Results:</strong> In the CRT1 study, after one night of CRT® for myopia, the central cornea flattened and the mid-periphery steepened, and myopia reduced. In the CRTH study, after one night of CRT® for hyperopia, the central cornea steepened and the para-central region flattened, myopia was induced or hyperopia was reduced, all aberrations except for the astigmatism increased and signed spherical aberration (SA) shifted from positive to negative. In the CRT2 study, after 4 weeks of CRT® lens wear, in general, the treatment zones stabilized by day 10, vision improved, myopia diminished, total aberration and defocus decreased and higher order aberrations (HOAs) including coma and SA increased. The visual, optical and subjective parameters became stable by day 10. In the CRTHDK study, after one night of CRT® (MZ vs. EII) lens wear, the central corneal curvature and aberration were similar with a slight exception: The mid-peripheral corneal steepening was greater in the EII (lower Dk/t) lens-wearing eyes compared to the MZ (higher Dk/t) eyes. In the STOK study, after brief CRT® and CRT®H lens wear, significant changes occurred from the 15 minutes time point: The corneal shape and optical performance changed in a predictable way; the central cornea swelled less than the mid-periphery after CRT® lens wear, whereas the central cornea swelled more than the para-central region after CRT®H lens wear; the central epithelium was thinner than the mid-periphery after CRT® lens wear and was thicker than the para-central region after CRT®H lens wear. <br /> <strong>Conclusion:</strong> After one night of lens wear, CRT® and CRTH® lenses were effective for myopia and hyperopia correction, respectively. In the 4 week CRT study, the treatment zone size changed during the first 10 days. Its size was associated with VA, refractive error, aberrations, and subjective vision. In the CRTHDK study, after one night of lens wear, changes in corneal shape were slightly different, with more mid-peripheral steepening in the lower Dk lens-wearing eyes compared to the higher Dk lens-wearing eyes. Changes in central corneal shape and optical performance were similar in both eyes. In the STOK study, CRT® lenses for myopia and hyperopia induced significant structural and optical changes in as little as 15 minutes. The cornea, particularly the epithelium, is remarkably moldable, with very rapid steepening and flattening possible in a small amount of time.
260

The Development of an Average, Anatomically Based, Young Adult, GRIN Eye Model

Priest, A. David January 2005 (has links)
The purpose of this thesis is to describe the development of an anatomically based, young adult eye model, which includes a crystalline lens with a gradient refractive index (GRIN). This model will then be used to investigate the effect of laser refractive surgery. The first step in this process involved developing a symmetrical eye model that was found to be a better predictor of empirical longitudinal spherical aberration than any previous model. Myopia was simulated by either a purely axial or refractive technique. While these models were found to be good predictors of the spherical aberration measured in young adults, they did not predict the total amount of high-order aberrations. The techniques used to simulate a single type of myopia caused the myopic models to become anatomically inaccurate. To improve the eye models a biconic surface was used to quantify the anterior corneal shape as a function of myopia. A method to describe the refractive error and biconic shape parameters in Jackson Cross Cylinder terms was implemented to determine correlations. Results indicate that a biconic accurately models the average shape of the anterior corneal surface as a function of myopia. Adopting the biconic model for the anterior corneal surface and adding average misalignments of the ocular components transformed the models from symmetrical to asymmetrical. Refractive error was now simulated by the anatomically accurate changes in both the anterior corneal shape and axial length. The asymmetrical aberrations resulted from the misalignment of the ocular components and provided a good prediction of average empirical aberrations but underestimated the aberrations of individual subjects. Photorefractive keratectomy, a form of laser refractive surgery, was simulated by theoretically calculated and by empirically measured changes in the shape of the anterior corneal surface. Applying the change in anterior corneal shape to the asymmetrical models was used to develop postoperative models. Changes in corneal shape and model aberrations attributed to theoretical calculations do not match empirical observations. The prediction of increased high-order aberrations in postoperative models based on empirically measured changes in the anterior corneal topography was similar to clinical results. Average anatomically based, GRIN eye models have been developed that accurately predict the average aberrations of emmetropic and myopic young adults. These models underestimate the asymmetrical and total high-order aberrations that have been measured in individual subjects but are still useful for investigating the average effects of procedures like refractive surgery.

Page generated in 0.0567 seconds