• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Galleries and drift : mapping undermined landscapes

Liu-Devereux, Pauline Carol January 2011 (has links)
This is a creative/critical project, a collection of narratives inspired by critical discourse that map a local landscape and chart a personal topography. As a result of interdisciplinary study, particularly in the area of cultural geography and map making, I found new ways to explore ideas about Cornwall’s heritage, her undermined landscape and expand upon issues raised in my MA dissertation. Recognising the instability and partiality of maps provided insight and mapping became method as newly revealed pathways and subtly shifting perspectives inspired fresh narratives which challenge stereotypical images of Cornwall and reveal the sometimes dark realities of rurality. The more personal narratives in this collection reveal a different undermined landscape: ideas about romantic constructions and inheritance led to explorations of nostalgia, memory and identity. Life events became life writing and many of these narratives reflect a search for direction and for a missing person: the artist I once was. But there are other disappearances in these narratives and the final chapter gives an account of family events that had to be recorded but which raise ethical questions that life writers cannot ignore. We must take responsibility for the way we write about vulnerable subjects and recognise what this writing tells us about ourselves: that, as Nancy K. Miller has suggested, by exposing our lives to others through life writing, we too become vulnerable subjects. The essay accompanying these narratives reflects upon process and finds ways of giving an account of the writer writing. It uncovers contemporary theories that are embedded in the narratives and I describe it as an orouboros, a creature that continuously eats its own tail. Like the text it subjects to scrutiny, the essay is a life narrative, an autobiographical act that merges creative and critical thinking and this amalgamation has been my aim since my studies began.
2

Soil landscape characterization of crop stubble covered fields using Ikonos high resolution panchromatic images

Pelcat, Yann S. 28 March 2006 (has links)
Soil landscape characterization into landform elements for precision agriculture has become an important issue. As soil properties and crop yields change over the landscape, delineating landform elements as a basis for site-specific application of crop inputs has become a reality. Two different methods of delineating landform elements from agricultural fields were tested and compared. The first method delineated landform elements from digital elevation maps with the use of the LandMapR(tm) software, the second method delineated classes from IKONOS high resolution panchromatic images using an unsupervised classification algorithm. The LandMapR(tm) model delineated landform elements from true elevation data collected in the field and was considered the reference dataset to which the image classification maps were compared to. The IKONOS imagery was processed using a combination of one filtering algorithm and one unsupervised classification method prior to being compared to the classified DEM. A total of 20 filtering algorithms and two unsupervised methods were used for each of the five study sites. The study sites consisted of four agricultural fields covered with crop stubble and one field in summer fallow. Image classification accuracy assessment was reported as overall, producer’s and user’s accuracy as well as Kappa statistic. Results showed that filtering algorithms and classification methods had no effects on image classification accuracies. Highest classification accuracy of image map to landform element map comparison achieved for all study sites was 17.9 %. Classification accuracy was affected by the heterogeneity of the ground surface cover found in each field. However, the classification accuracy of the fallow field was not superior to the stubble fields. / May 2006
3

Soil landscape characterization of crop stubble covered fields using Ikonos high resolution panchromatic images

Pelcat, Yann S. 28 March 2006 (has links)
Soil landscape characterization into landform elements for precision agriculture has become an important issue. As soil properties and crop yields change over the landscape, delineating landform elements as a basis for site-specific application of crop inputs has become a reality. Two different methods of delineating landform elements from agricultural fields were tested and compared. The first method delineated landform elements from digital elevation maps with the use of the LandMapR(tm) software, the second method delineated classes from IKONOS high resolution panchromatic images using an unsupervised classification algorithm. The LandMapR(tm) model delineated landform elements from true elevation data collected in the field and was considered the reference dataset to which the image classification maps were compared to. The IKONOS imagery was processed using a combination of one filtering algorithm and one unsupervised classification method prior to being compared to the classified DEM. A total of 20 filtering algorithms and two unsupervised methods were used for each of the five study sites. The study sites consisted of four agricultural fields covered with crop stubble and one field in summer fallow. Image classification accuracy assessment was reported as overall, producer’s and user’s accuracy as well as Kappa statistic. Results showed that filtering algorithms and classification methods had no effects on image classification accuracies. Highest classification accuracy of image map to landform element map comparison achieved for all study sites was 17.9 %. Classification accuracy was affected by the heterogeneity of the ground surface cover found in each field. However, the classification accuracy of the fallow field was not superior to the stubble fields.
4

Soil landscape characterization of crop stubble covered fields using Ikonos high resolution panchromatic images

Pelcat, Yann S. 28 March 2006 (has links)
Soil landscape characterization into landform elements for precision agriculture has become an important issue. As soil properties and crop yields change over the landscape, delineating landform elements as a basis for site-specific application of crop inputs has become a reality. Two different methods of delineating landform elements from agricultural fields were tested and compared. The first method delineated landform elements from digital elevation maps with the use of the LandMapR(tm) software, the second method delineated classes from IKONOS high resolution panchromatic images using an unsupervised classification algorithm. The LandMapR(tm) model delineated landform elements from true elevation data collected in the field and was considered the reference dataset to which the image classification maps were compared to. The IKONOS imagery was processed using a combination of one filtering algorithm and one unsupervised classification method prior to being compared to the classified DEM. A total of 20 filtering algorithms and two unsupervised methods were used for each of the five study sites. The study sites consisted of four agricultural fields covered with crop stubble and one field in summer fallow. Image classification accuracy assessment was reported as overall, producer’s and user’s accuracy as well as Kappa statistic. Results showed that filtering algorithms and classification methods had no effects on image classification accuracies. Highest classification accuracy of image map to landform element map comparison achieved for all study sites was 17.9 %. Classification accuracy was affected by the heterogeneity of the ground surface cover found in each field. However, the classification accuracy of the fallow field was not superior to the stubble fields.

Page generated in 0.0753 seconds