• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 16
  • 7
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 51
  • 37
  • 11
  • 11
  • 11
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

X-ray crystallographic studies of fragments of DNA gyrase B protein

Lewis, Richard January 1994 (has links)
No description available.
2

Phosphorylation of the human topoisomerase II protein

Fry, Andrew Mark January 1992 (has links)
DNA topoisomerase II is an essential enzyme in eukaryotes and is required for many aspects of DNA metabolism including DNA replication, recombination, chromosome segregation and chromosome condensation. It is also a major component of the nuclear scaffold. Topoisomerase II from lower eukaryotes has been shown to be phosphorylated in vivo and this phosphorylation leads to a modulation of activity. However, unlike these lower eukaryotes, human topoisomerase II exists as two closely related, but genetically distinct, isozymes which have markedly different expression and localization patterns. Topoisomerase IIα is a 170kDa protein and topoisomerase IIβ is 180kDa. This study set out to analyse the phosphorylation of these specific isozymes and understand how this leads to the regulation of their distinct biological functions. In order to undertake this study, two polyclonal anti-topoisomerase II antibodies were generated and a series of other polyclonal and monoclonal antibodies characterized. Furthermore, the α isozyme of human topoisomerase II was purified to near homogeneity from cultured HeLa cells. A kinase activity with the biochemical characteristics of casein kinase II co-purified with and could phosphorylate the purified topoisomerase Hot protein. The α and β isozymes of human topoisomerase II were both shown to be phosphoproteins in vivo. The α isozyme is phosphorylated predominantly on serine residues but with a minor proportion of phosphothreonine. Both the α isozyme and a stable ISOkDa fragment of the β isozyme are phosphorylated in vitro by casein kinase II and the catalytic subunit of PKA (cAMP-dependent protein kinase). The α isozyme can also be phosphorylated in vitro by Ca<sup>2+</sup>-dependent and -independent isozymes of protein kinase C and the cell cycle-regulated p34<sup>cdc2</sup> kinase. Two-dimensional tryptic phosphopeptide mapping suggested that the pattern of phosphorylation of human topoisomerase Ha protein in vivo is complex with phosphorylation occurring on multiple residues. Comparison with in vitro maps suggested that casein kinase II and PKA could account for most of the phosphorylation seen in vivo. Using a one- dimensional phosphopeptide mapping approach, a major site of phosphorylation in vivo appeared to be within the C-terminal 20kDa, and that casein kinase II, PKA and PKC may all phosphorylate this region. Phosphorylation of human topoisomerase Hoc protein by casein kinase II, PKA and PKC all led to a stimulation of activity as measured by plasmid relaxation and decatenation. In contrast, dephosphorylation led to a marked decrease in activity of the enzyme. The dephosphorylated enzyme could be reactivated by casein kinase II but not PKA phosphorylation. These data suggest that phosphorylation plays a crucial role in the control of DNA tertiary structure in human cells via regulation of the activity of topoisomerase II proteins.
3

Studies on glucose isomerase from Lactobacillus brevis

Ferreira, Maria Do Socorro Santos January 1979 (has links)
Glucose isomerase (E.C. 5.3.1.4) was extracted from Lactobacillus brevis N.CD.O 474 grown in xylose, containing medium with a yield of cells (dry weight) of 2.3 - 3.3gll of medium and 300-310 glucose isomerase units. Several methods for releasing the intracellular enzyme were investigated and the specific activity recovery was highest with the heat autolysis method. The crude extract preparation was further purified by nucleic acid precipitation with MnCl2, protein fractionation by ammonium sulphate and dialysis followed by chromatography on CM-cellulose, DEAE-cellulose and gel filtration on Sephadex G-200. A final purification of 24 fold was achieved with about 25% activity recovery in 4 purification steps as follows: enzyme extraction by heat autolyis, MnCl2 treatment (nucleic acid precipitation), ammonium sulphate (2-3.6M2pH 7.0) protein precipitation and CM-cellulose chromatography. A mol. wt. of approximately 120,000 was calculated for the purified enzyme by gel filtration (Sephadex G-200) which dissociated in small subunits with mol wt. of 54,000-42,600 calculated by electrophoresis on 5% polyacrylamide - 3% SDS-8M urea. The purified enzyme was immobilised with a PEI-derivative of nylon (polyethyleneimine) and the kinetic properties of both free and immobilized enzyme were investigated. Apparent Km values for the free purified enzyme were 7.4 x 10<sup>-3</sup>M (D-xylose); 2.8M (D-glucose); 1.9M (D-fructose). The corresponding apparent V values were 0.45; 0.015 and 0.022 mumoles min-1. mug enzyme-1 respectively. Investigations were also carried out into several other possibilities of assaying glucose isomerase activity. Parameters for the coupled reaction assay system using sorbitol dehydrogenase -NADH were optimised.
4

Structure-based functional studies of human Topoisomerase I /

Yang, Zheng, January 2001 (has links)
Thesis (Ph. D.)--University of Washington, 2001. / Vita. Includes bibliographical references (leaves 86-97).
5

Role of the PAT1 gene of S. cerevisiae in genome stability

Wang, Xiaoqi January 1997 (has links)
No description available.
6

Les ADN topoisomérases du crenarchaeon hyperthermophile Sulfolobus solfataricus : régulateurs du métabolisme de l'ADN ? / DNA topoisomerases of the crenarchaeon hyperthermophile Sulfolobus solfataricus : regulators of DNA metabolism ?

Couturier, Mohea 07 November 2013 (has links)
Les ADN topoisomérases sont des enzymes capables de moduler la torsion de la double hélice d’ADN afin de rendre compatible sa topologie avec les différents processus cellulaires impliquant l’ADN. Les hyperthermophiles possèdent au moins une topoisomérase particulière, la reverse gyrase qui est constituée à la fois d’un domaine topoisomérase IA etd’un domaine hélicase de type SF2. Mon sujet de thèse a eu pour objectif de déterminer principalement l’implication des ADN topoisomérases IA dans les différents processus cellulaires de Sulfolobus solfataricus. Ce crenarchaeon hyperthermophile possède, en plus, d’une ADN topoisomérase de type II (Topo VI), trois ADN-topoisomérases IA dont une « classique » (TopA) et deux reverse gyrases (TopR1 et TopR2). Notre approche a permis d’estimer, pour la première fois, le nombre de TopR1 et de TopR2 par cellule en fonction des différentes conditions testées. L’étude des variations quantitatives des ADN topoisomérases a clairement mis en évidence que TopR1 et TopR2 sont régulées différemment ce qui renforce l’hypothèse d’une spécialisation de leurs fonctions. Nous avons ainsi montré que TopR1 est responsable du maintien de l’homéostasie du surenroulement de l’ADN. Si la Topo VI de par son activité antagoniste est impliquée dansce même contrôle homéostatique, elle ne fait pas l’objet d’une régulation quantitative. De plus, nous avons mis en évidence que TopR1 était liée à la vie à haute température. Enfin, nos résultats suggèrent que TopR2 serait pour sa part impliquée dans la stabilité des génomes. L’identification des partenaires protéiques respectifs des quatre ADN topoisomérases de S. solfataricus permettra d’avoir une vision globale des réseaux de régulation permettant derésoudre les différentes des contraintes topologiques générées au cours de la vie de cet hyperthermophile. / DNA topoisomerases act in all DNA metabolism processes to control the DNA topology. Hyperthermophiles possess at least a particular topoisomerase, the reverse gyrase composed of a DNA topoisomerase IA domain and a helicase SF2 domain within the same polypeptide. The general objective of my thesis was to determine the involvement of each DNA topoisomerase in different cellular processes of S. solfataricus. This hyperthermophilic crenarchaeon possesses in addition to a type II DNA topoisomerase (Topo VI), three DNA topoisomerases IA : a classical one (TopA) and two reverse gyrases (TopR1 and TopR2). Our experimental approach allowed to estimate for the first time the number of TopR1 and TopR2 per cell in relation to different conditions. The study of quantitative variations of each DNA topoisomerase clearly showed that TopR1 and TopR2 are differently regulated suggesting that they are involved in distinct cellular processes. Indeed, we showed that TopR1 is the main actor of the homeostatic control of the DNA supercoiling. If the Topo VI with its antogonistic activity is involved in this homeostatic control, there is no regulation at the level of protein quantity. In addition we evidenced that TopR1 is somehow linked to the life at high temperature. Our results suggest that TopR2 is involved in genome stability. The identification of the respective potential partners of the four DNA topoisomerases of S. solfataricus will allow to get a more detailed understanding of the DNA topology regulation during the hyperthermophilic life style.
7

Human topoisomerases and DNA geometry putting a positive twist on enzyme action /

McClendon, A. Kathleen January 2006 (has links)
Thesis (Ph. D. in Biochemistry)--Vanderbilt University, May 2006. / Title from title screen. Includes bibliographical references.
8

Avaliação do efeito citotóxico de piranonaftoquinonas inibidoras de DNA topoisomerases sobre células de leucemia

Oliveira, Maria Eduarda Ismerio Moreira de January 2015 (has links)
Made available in DSpace on 2016-04-27T12:28:41Z (GMT). No. of bitstreams: 2 maria_oliveira_ioc_mest_2015.pdf: 3167015 bytes, checksum: 4bc54f5dd3253314f23a2aa12a3fea12 (MD5) license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2015 / Embora existam diversos tratamentos disponíveis atualmente, o câncer ainda é uma das principais causas de morbidade e mortalidade no mundo e a leucemia é responsável por muitas delas. Além dos fármacos atuais apresentarem diversos efeitos adversos, já foram relatadas diversas ocorrências de resistência celular a eles. Dessa forma, é imprescindível a busca por novos compostos com atividade anticancerígena eficaz, mas que detenham melhor perfil toxicológico. Nesse âmbito, destacam-se os inibidores projetados contra alvos com mutação ou superexpressos em células cancerosas, devido ao fato de permitirem maior seletividade. As topoisomerases são enzimas essenciais para o desenvolvimento celular e estão superexpressas em células de câncer. Portanto, elas são alvos importantes na quimioterapia antitumoral. O lapachol, uma naftoquinona natural, e seus derivados parecem ser promissores para a oncoterapia e têm sido bastante investigados nos últimos tempos. Novos compostos derivados de \03B1 e \03B2- lapachona inibidores de topoisomerases (PNQs) foram avaliados quanto ao seu potencial efeito citotóxico em células de leucemia através de ensaios de viabilidade, apoptose e ciclo celular. As linhagens utilizadas apresentam mutações que permitem investigar a participação da via de morte mediada pelo Fas: a A3 é a linhagem selvagem, sensível à apoptose via Fas; a I2.1 é derivada da A3, sendo deficiente em FADD; e a I9.2, também derivada da A3, é deficiente em caspase-8. Tanto o FADD quanto a caspase-8 estão diretamente envolvidos com a via clássica de ativação do Fas Também foi utilizada uma linhagem celular normal (WSS-1) para que fosse analisada a seletividade das PNQs. A maioria dos compostos mostrou-se eficaz contra as células leucêmicas e a comparação dos resultados obtidos entre elas indicou uma dependência parcial da ativação da via Fas para a atuação dessas PNQs. De acordo com os dados obtidos para a linhagem I9.2 no ensaio de apoptose, essa ativação do Fas não é necessariamente dependente de caspase-8. Além disso, a partir da administração dos compostos, foram observadas alterações no ciclo celular com predomínio de células na fase G2/M em relação ao controle. Esse efeito foi mais acentuado na linhagem A3, sugerindo que a presença da via completa do Fas possa estar relacionada a regulações do ciclo celular após o tratamento com os compostos. Embora menos seletivas que seus precursores, algumas PNQs foram mais potentes. Esse achado favorece o estudo futuro de modificações estruturais alternativas para essas moléculas, a fim de manter sua potência anticancerígena, mas que contribuíram para aumentar sua seletividade. Juntos, os resultados encontrados permitem iniciar a elucidação da atuação intracelular desses novos derivados do lapachol / Even though there are diverse types of treatment currently available, cancer still is one of the main causes of morbidity and mortality in the world, and leukemia is responsible for many of them. In addition to presenting various side effects, it has been already reported many occurrences of cellular resistance to them. Therefore, the search for new compounds that present effective anticancer activity with a better toxicological profile is indispensable. In this context, stand out the inhibitors designed against mutated or overexpressed targets in cancer cells because they allow for more selectivity. Topoisomerases are essential enzymes to the cellular development and are overexpressed in cancer cells. Therefore, they are important targets on antitumor chemotherapy. Lapachol, a natural naphthoquinone, and its derivatives seem to be promising to oncotherapy, and have been widely investigated recently. New topoisomerase inhibitors derived from α and β-lapachone (PNQs) were evaluated as to their potential cytotoxic effect on leukemia cells through viability, apoptosis and cellular cycle asssays. The cell lines that were used present mutations that allow investigating the participation of the Fas death pathway: A3 is a wild-type cell line, sensible to apoptosis by Fas; I2.1 is derived from A3, being deficient in FADD; and I9.2, also derived from A3, is deficient in caspase-8. Both FADD and caspase-8 are directly involved with the classical Fas activation pathway. A normal cell line (WSS-1) was also used in order to analyse the selectivity of the PNQs. The majority of the compounds have been shown to be effective against leukemia cells and the comparison of the results obtained among them indicated a partial dependency of the Fas pathway activation for the action of these PNQs. According to the data obtained from the I9.2 cell line on the apoptosis test, this Fas activation is not necessarily dependent on caspase-8. Besides, from the administration of the compounds, alterations in the cell cycle were observed, triggering a G2/M phase arrest. That effect was more marked on the A3 cell line, suggesting that the presence of the complete Fas pathway may be related to the regulations of the cell cycle after the treatment with the compounds. Although they were less selective than their predecessors, some PNQs were more potent. That finding stimulates future structural modification studies for these molecules, in order to keep their anticancer potency while increasing selectivity. Together, the results contribute to start elucidating the intercellular action of these lapachol derivatives. / 2016-11-24
9

Quinone metabolites of environmental toxins poison topoisomerase II[alpha]

Bender, Ryan P. January 2007 (has links)
Thesis (Ph. D. in Biochemistry)--Vanderbilt University, May 2007. / Title from title screen. Includes bibliographical references.
10

Identification of phosphorylation sites of TOPORS and a role for phosphorylated residues in the regulation of ubiquitin and SUMO E3 ligase activity

Park, Hye-Jin. January 2008 (has links)
Thesis (Ph. D.)--Rutgers University, 2008. / "Graduate Program in Pharmaceutical Science." Includes bibliographical references (p. 99-107).

Page generated in 0.0614 seconds