1 |
Electronic Structure and Lattice Dynamics of Elements and CompoundsSouvatzis, Petros January 2007 (has links)
<p>The elastic constants of Mg<sub>(1-x)</sub>Al<sub>x</sub>B<sub>2</sub> have been calculated in the regime 0<x<0.25. The calculations show that the ratio, B/G, between the bulk- and the shear-modulus stays well below the empirical ductility limit, 1.75, for all concentrations, indicating that the introduction of Al will not change the brittle behaviour of the material considerably. Furthermore, the tetragonal elastic constant C’ has been calculated for the transition metal alloys Fe-Co, Mo-Tc and W-Re, showing that if a suitable tuning of the alloying is made, these materials have a vanishingly low C'. Thermal expansion calculations of the 4d transition metals have also been performed, showing good agreement with experiment with the exception of Nb and Mo. The calculated phonon dispersions of the 4d metals all give reasonable agreement with experiment. First principles calculations of the thermal expansion of hcp Ti have been performed, showing that this element has a negative thermal expansion along the c-axis which is linked to the closeness of the Fermi level to an electronic topological transition. Calculations of the EOS of fcc Au give support to the suggestion that the ruby pressure scale might underestimate pressures with ~10 GPa at pressures ~150 GPa. The high temperature bcc phase of the group IV metals has been calculated with the novel self-consistent ab-initio dynamical (SCAILD) method. The results show good agreement with experiment, and the free energy resolution of < 1 meV suggests that this method might be suitable for calculating free energy differences between different crystallographic phases as a function of temperature.</p>
|
2 |
Electronic Structure and Lattice Dynamics of Elements and CompoundsSouvatzis, Petros January 2007 (has links)
The elastic constants of Mg(1-x)AlxB2 have been calculated in the regime 0<x<0.25. The calculations show that the ratio, B/G, between the bulk- and the shear-modulus stays well below the empirical ductility limit, 1.75, for all concentrations, indicating that the introduction of Al will not change the brittle behaviour of the material considerably. Furthermore, the tetragonal elastic constant C’ has been calculated for the transition metal alloys Fe-Co, Mo-Tc and W-Re, showing that if a suitable tuning of the alloying is made, these materials have a vanishingly low C'. Thermal expansion calculations of the 4d transition metals have also been performed, showing good agreement with experiment with the exception of Nb and Mo. The calculated phonon dispersions of the 4d metals all give reasonable agreement with experiment. First principles calculations of the thermal expansion of hcp Ti have been performed, showing that this element has a negative thermal expansion along the c-axis which is linked to the closeness of the Fermi level to an electronic topological transition. Calculations of the EOS of fcc Au give support to the suggestion that the ruby pressure scale might underestimate pressures with ~10 GPa at pressures ~150 GPa. The high temperature bcc phase of the group IV metals has been calculated with the novel self-consistent ab-initio dynamical (SCAILD) method. The results show good agreement with experiment, and the free energy resolution of < 1 meV suggests that this method might be suitable for calculating free energy differences between different crystallographic phases as a function of temperature.
|
3 |
From cells to tissuesMerkel, Matthias 02 December 2014 (has links) (PDF)
An essential prerequisite for the existence of multi-cellular life is the organization of cells into tissues. In this thesis, we theoretically study how large-scale tissue properties can emerge from the collective behavior of individual cells. To this end, we focus on the properties of epithelial tissue, which is one of the major tissue types in animals. We study how rheological properties of epithelia emerge from cellular processes, and we develop a physical description for the dynamics of an epithelial cell polarity. We apply our theoretical studies to observations in the developing wing of the fruit fly, Drosophila melanogaster.
In order to study epithelial mechanics, we first develop a geometrical framework that rigorously describes the deformation of two-dimensional cellular networks. Our framework decomposes large-scale deformation into cellular contributions. For instance, we show how large-scale tissue shear decomposes into contributions by cell shape changes and into contributions by different kinds of topological transitions. We apply this framework in order to quantify the time-dependent deformation of the fruit fly wing, and to decompose it into cellular contributions.
We also use this framework as a basis to study large-scale rheological properties of epithelia and their dependence on cellular fluctuations. To this end, we represent epithelial tissues by a vertex model, which describes cells as elastic polygons. We extend the vertex model by introducing fluctuations on the cellular scale, and we develop a method to perform perpetual simple shear simulations. Analyzing the steady state of such simple shear simulations, we find that the rheological behavior of vertex model tissue depends on the fluctuation amplitude. For small fluctuation amplitude, it behaves like a plastic material, and for high fluctuation amplitude, it behaves like a visco-elastic fluid.
In addition to analyzing mechanical properties, we study the reorientation of an epithelial cell polarity. To this end, we develop a simple hydrodynamic description for polarity reorientation. In particular, we account for polarity reorientation by tissue shear, by another polarity field, and by local polarity alignment. Furthermore, we develop methods to quantify polarity patterns based on microscopical images of the fly wing. We find that our hydrodynamic description does not only account for polarity reorientation in wild type fly wings. Moreover, it is for the first time possible to also account for the observed polarity patterns in a number of genetically altered flies. / Eine wesentliche Voraussetzung für die Existenz mehrzelligen Lebens ist, dass sich einzelne Zellen sinnvoll zu Geweben ergänzen können. In dieser Dissertation untersuchen wir, wie großskalige Eigenschaften von Geweben aus dem kollektiven Verhalten einzelner Zellen hervorgehen. Dazu konzentrieren wir uns auf Epitheliengewebe, welches eine der Grundgewebearten in Tieren darstellt. Wir stellen theoretische Untersuchungen zu rheologischen Eigenschaften und zu zellulärer Polarität von Epithelien an. Diese theoretischen Untersuchungen vergleichen wir mit experimentellen Beobachtungen am sich entwickelnden Flügel der schwarzbäuchigen Taufliege (Drosophila melanogaster).
Um die Mechanik von Epithelien zu untersuchen, entwickeln wir zunächst eine geometrische Beschreibung für die Verformung von zweidimensionalen zellulären Netzwerken. Unsere Beschreibung zerlegt die mittlere Verformung des gesamten Netzwerks in zelluläre Beitrage. Zum Beispiel wird eine Scherverformung des gesamten Netzwerks auf der zellulären Ebene exakt repräsentiert: einerseits durch die Verformung einzelner Zellen und andererseits durch topologische Veränderungen des zellulären Netzwerks. Mit Hilfe dieser Beschreibung quantifizieren wir die Verformung des Fliegenflügels während des Puppenstadiums. Des Weiteren führen wir die Verformung des Flügels auf ihre zellulären Beiträge zurück.
Wir nutzen diese Beschreibung auch als Ausgangspunkt, um effektive rheologische Eigenschaften von Epithelien in Abhängigkeit von zellulären Fluktuationen zu untersuchen. Dazu simulieren wir Epithelgewebe mittels eines Vertex Modells, welches einzelne Zellen als elastische Polygone abstrahiert. Wir erweitern dieses Vertex Modell um zelluläre Fluktuationen und um die Möglichkeit, Schersimulationen beliebiger Dauer durchzuführen. Die Analyse des stationären Zustands dieser Simulationen ergibt plastisches Verhalten bei kleiner Fluktuationsamplitude und visko-elastisches Verhalten bei großer Fluktuationsamplitude.
Neben mechanischen Eigenschaften untersuchen wir auch die Umorientierung einer Zellpolarität in Epithelien. Dazu entwickeln wir eine einfache hydrodynamische Beschreibung für die Umorientierung eines Polaritätsfeldes. Wir berücksichtigen dabei insbesondere Effekte durch Scherung, durch ein anderes Polaritätsfeld und durch einen lokalen Gleichrichtungseffekt. Um unsere theoretische Beschreibung mit experimentellen Daten zu vergleichen, entwickeln wir Methoden um Polaritätsmuster im Fliegenflügel zu quantifizieren. Schließlich stellen wir fest, dass unsere hydrodynamische Beschreibung in der Tat beobachtete Polaritätsmuster reproduziert. Das gilt nicht nur im Wildtypen, sondern auch in genetisch veränderten Tieren.
|
4 |
From cells to tissuesMerkel, Matthias 21 November 2014 (has links)
An essential prerequisite for the existence of multi-cellular life is the organization of cells into tissues. In this thesis, we theoretically study how large-scale tissue properties can emerge from the collective behavior of individual cells. To this end, we focus on the properties of epithelial tissue, which is one of the major tissue types in animals. We study how rheological properties of epithelia emerge from cellular processes, and we develop a physical description for the dynamics of an epithelial cell polarity. We apply our theoretical studies to observations in the developing wing of the fruit fly, Drosophila melanogaster.
In order to study epithelial mechanics, we first develop a geometrical framework that rigorously describes the deformation of two-dimensional cellular networks. Our framework decomposes large-scale deformation into cellular contributions. For instance, we show how large-scale tissue shear decomposes into contributions by cell shape changes and into contributions by different kinds of topological transitions. We apply this framework in order to quantify the time-dependent deformation of the fruit fly wing, and to decompose it into cellular contributions.
We also use this framework as a basis to study large-scale rheological properties of epithelia and their dependence on cellular fluctuations. To this end, we represent epithelial tissues by a vertex model, which describes cells as elastic polygons. We extend the vertex model by introducing fluctuations on the cellular scale, and we develop a method to perform perpetual simple shear simulations. Analyzing the steady state of such simple shear simulations, we find that the rheological behavior of vertex model tissue depends on the fluctuation amplitude. For small fluctuation amplitude, it behaves like a plastic material, and for high fluctuation amplitude, it behaves like a visco-elastic fluid.
In addition to analyzing mechanical properties, we study the reorientation of an epithelial cell polarity. To this end, we develop a simple hydrodynamic description for polarity reorientation. In particular, we account for polarity reorientation by tissue shear, by another polarity field, and by local polarity alignment. Furthermore, we develop methods to quantify polarity patterns based on microscopical images of the fly wing. We find that our hydrodynamic description does not only account for polarity reorientation in wild type fly wings. Moreover, it is for the first time possible to also account for the observed polarity patterns in a number of genetically altered flies.:1 Introduction
1.1 The development of multi-cellular organisms
1.2 Biology of epithelial tissues
1.3 The model system Drosophila melanogaster
1.4 Planar cell polarity
1.5 Physical description of biological tissues
1.6 Overview over this thesis
2 Tissue shear in cellular networks
2.1 Geometry of tissue deformation on the cellular scale
2.2 Decomposition of the large-scale flow field into cellular contributions
2.3 Cellular contributions to the flow field in the fruit fly wing
2.4 Discussion
3 Rheological behavior of vertex model tissue under external shear
3.1 A vertex model to describe epithelial mechanics
3.2 Fluctuation-induced fluidization of tissue
3.3 Discussion
4 Quantitative study of polarity reorientation in the fruit fly wing
4.1 Experimentally quantified polarity patterns
4.2 Effective hydrodynamic theory for polarity reorientation
4.3 Comparison of theory and experiment
4.4 Discussion
5 Conclusions and outlook
Appendices:
A Algebra of real 2 × 2 matrices
B Deformation of triangle networks
C Simple shear simulations using the vertex model
D Coarse-graining of a cellular Core PCP model
E Quantification of polarity patterns in the fruit fly wing
F Theory for polarity reorientation in the fruit fly wing
G Boundary conditions for the polarity field in the fruit fly wing
Table of symbols
Bibliography / Eine wesentliche Voraussetzung für die Existenz mehrzelligen Lebens ist, dass sich einzelne Zellen sinnvoll zu Geweben ergänzen können. In dieser Dissertation untersuchen wir, wie großskalige Eigenschaften von Geweben aus dem kollektiven Verhalten einzelner Zellen hervorgehen. Dazu konzentrieren wir uns auf Epitheliengewebe, welches eine der Grundgewebearten in Tieren darstellt. Wir stellen theoretische Untersuchungen zu rheologischen Eigenschaften und zu zellulärer Polarität von Epithelien an. Diese theoretischen Untersuchungen vergleichen wir mit experimentellen Beobachtungen am sich entwickelnden Flügel der schwarzbäuchigen Taufliege (Drosophila melanogaster).
Um die Mechanik von Epithelien zu untersuchen, entwickeln wir zunächst eine geometrische Beschreibung für die Verformung von zweidimensionalen zellulären Netzwerken. Unsere Beschreibung zerlegt die mittlere Verformung des gesamten Netzwerks in zelluläre Beitrage. Zum Beispiel wird eine Scherverformung des gesamten Netzwerks auf der zellulären Ebene exakt repräsentiert: einerseits durch die Verformung einzelner Zellen und andererseits durch topologische Veränderungen des zellulären Netzwerks. Mit Hilfe dieser Beschreibung quantifizieren wir die Verformung des Fliegenflügels während des Puppenstadiums. Des Weiteren führen wir die Verformung des Flügels auf ihre zellulären Beiträge zurück.
Wir nutzen diese Beschreibung auch als Ausgangspunkt, um effektive rheologische Eigenschaften von Epithelien in Abhängigkeit von zellulären Fluktuationen zu untersuchen. Dazu simulieren wir Epithelgewebe mittels eines Vertex Modells, welches einzelne Zellen als elastische Polygone abstrahiert. Wir erweitern dieses Vertex Modell um zelluläre Fluktuationen und um die Möglichkeit, Schersimulationen beliebiger Dauer durchzuführen. Die Analyse des stationären Zustands dieser Simulationen ergibt plastisches Verhalten bei kleiner Fluktuationsamplitude und visko-elastisches Verhalten bei großer Fluktuationsamplitude.
Neben mechanischen Eigenschaften untersuchen wir auch die Umorientierung einer Zellpolarität in Epithelien. Dazu entwickeln wir eine einfache hydrodynamische Beschreibung für die Umorientierung eines Polaritätsfeldes. Wir berücksichtigen dabei insbesondere Effekte durch Scherung, durch ein anderes Polaritätsfeld und durch einen lokalen Gleichrichtungseffekt. Um unsere theoretische Beschreibung mit experimentellen Daten zu vergleichen, entwickeln wir Methoden um Polaritätsmuster im Fliegenflügel zu quantifizieren. Schließlich stellen wir fest, dass unsere hydrodynamische Beschreibung in der Tat beobachtete Polaritätsmuster reproduziert. Das gilt nicht nur im Wildtypen, sondern auch in genetisch veränderten Tieren.:1 Introduction
1.1 The development of multi-cellular organisms
1.2 Biology of epithelial tissues
1.3 The model system Drosophila melanogaster
1.4 Planar cell polarity
1.5 Physical description of biological tissues
1.6 Overview over this thesis
2 Tissue shear in cellular networks
2.1 Geometry of tissue deformation on the cellular scale
2.2 Decomposition of the large-scale flow field into cellular contributions
2.3 Cellular contributions to the flow field in the fruit fly wing
2.4 Discussion
3 Rheological behavior of vertex model tissue under external shear
3.1 A vertex model to describe epithelial mechanics
3.2 Fluctuation-induced fluidization of tissue
3.3 Discussion
4 Quantitative study of polarity reorientation in the fruit fly wing
4.1 Experimentally quantified polarity patterns
4.2 Effective hydrodynamic theory for polarity reorientation
4.3 Comparison of theory and experiment
4.4 Discussion
5 Conclusions and outlook
Appendices:
A Algebra of real 2 × 2 matrices
B Deformation of triangle networks
C Simple shear simulations using the vertex model
D Coarse-graining of a cellular Core PCP model
E Quantification of polarity patterns in the fruit fly wing
F Theory for polarity reorientation in the fruit fly wing
G Boundary conditions for the polarity field in the fruit fly wing
Table of symbols
Bibliography
|
Page generated in 0.1397 seconds