1 |
Characterization of topological phases in models of interacting fermionsMotruk, Johannes 15 July 2016 (has links) (PDF)
The concept of topology in condensed matter physics has led to the discovery of rich and exotic physics in recent years. Especially when strong correlations are included, phenomenons such as fractionalization and anyonic particle statistics can arise. In this thesis, we study several systems hosting topological phases of interacting fermions.
In the first part, we consider one-dimensional systems of parafermions, which are generalizations of Majorana fermions, in the presence of a Z_N charge symmetry. We classify the symmetry-protected topological (SPT) phases that can occur in these systems using the projective representations of the symmetries and find a finite number of distinct phases depending on the prime factorization of N. The different phases exhibit characteristic degeneracies in their entanglement spectrum (ES). Apart from these SPT phases, we report the occurrence of parafermion condensate phases for certain values of N. When including an additional Z_N symmetry, we find a non-Abelian group structure under the addition of phases.
In the second part of the thesis, we focus on two-dimensional lattice models of spinless fermions. First, we demonstrate the detection of a fractional Chern insulator (FCI) phase in the Haldane honeycomb model on an infinite cylinder by means of the density-matrix renormalization group (DMRG). We report the calculation of several quantities characterizing the topological order of the state, i.e., (i)~the Hall conductivity, (ii)~the spectral flow and level counting in the ES, (iii)~the topological entanglement entropy, and (iv)~the charge and topological spin of the quasiparticles. Since we have access to sufficiently large system sizes without band projection with DMRG, we are in addition able to investigate the transition from a metal to the FCI at small interactions which we find to be of first order.
In a further study, we consider a time-reversal symmetric model on the honeycomb lattice where a Chern insulator (CI) induced by next-nearest neighbor interactions has been predicted by mean field theory. However, various subsequent studies challenged this picture and it was still unclear whether the CI would survive quantum fluctuations. We therefore map out the phase diagram of the model as a function of the interactions on an infinite cylinder with DMRG and find evidence for the absence of the CI phase. However, we report the detection of two novel charge-ordered phases and corroborate the existence of the remaining phases that had been predicted in mean field theory. Furthermore, we characterize the transitions between the various phases by studying the behavior of correlation length and entanglement entropy at the phase boundaries. Finally, we develop an improvement to the DMRG algorithm for fermionic lattice models on cylinders. By using a real space representation in the direction along the cylinder and a real space representation in the perpendicular direction, we are able to use the momentum around the cylinder as conserved quantity to reduce computational costs. We benchmark the method by studying the interacting Hofstadter model and report a considerable speedup in computation time and a severely reduced memory usage.
|
2 |
Emergent Gauge Fields in Systems with Competing InteractionsGohlke, Matthias 27 November 2018 (has links)
Interactions between the microscopic constituents of a solid---a many-body system--- can lead to novel phases and exotic physical phenomena like fractionalization, topological order, quantum spin liquids, emergent gauge field, etc.. The concept of frustration provides a ground for such exotic phenomena. Frustration can prevent a many-body system from establishing long-range order down to the lowest temperatures due to competing interactions. Instead, competing interactions may result in disordered and liquid-like phases of matter that provide the vacuum for fractional excitations. The absence of any order parameter in strongly frustrated systems---due to not breaking any symmetry spontaneously--- immediately raises the question about possible experimental probes of spin-liquids and their fractional excitations. Dynamic probes, like inelastic neutron scattering or Raman scattering, provide an experimental method to detect signatures of fractionalised quasiparticles. The energy and momentum transferred in a scattering event is split between the fractional quasiparticles. On the theory side, computing such dynamical signatures beyond one spatial dimension is generally a difficult task. In this thesis, numerical methods like density matrix renormalisation group and matrix product states are used to study strongly frustrated magnets and their dynamics in a non-perturbative way.
This thesis covers two physical models in the context of frustration and emergent gauge fields. Firstly, the Kitaev model of spin-1/2 degrees of freedom subject to strongly anisotropic spin exchange. The Kitaev model features quantum spin liquid ground states with fractionalization of spins into Majorana fermions and Z_2-fluxes---the visons of an emergent Z_2 gauge theory. The main questions addressed here concern the stability of the quantum spin liquid phase upon adding perturbations relevant in magnetic compounds such as Heisenberg or the symmetric-offdiagonal Gamma exchange. Applying a magnetic field drives the Kitaev model into a topologically ordered phase. The excitations and dynamical signatures within the spin liquid, the topologically ordered phase, and within ordered phases are studied. Secondly, a classical minimal model of the proton configuration in water ice is studied. The ice rules, a local constraint describing the low energy manifold, result in emergent Maxwell's equation. Upon applying an external electric field along certain axis, a polarization plateau occurs in which the remaining degrees of freedom can be described by dimers on two-dimensional lattices.
|
3 |
Characterization of topological phases in models of interacting fermionsMotruk, Johannes 25 May 2016 (has links)
The concept of topology in condensed matter physics has led to the discovery of rich and exotic physics in recent years. Especially when strong correlations are included, phenomenons such as fractionalization and anyonic particle statistics can arise. In this thesis, we study several systems hosting topological phases of interacting fermions.
In the first part, we consider one-dimensional systems of parafermions, which are generalizations of Majorana fermions, in the presence of a Z_N charge symmetry. We classify the symmetry-protected topological (SPT) phases that can occur in these systems using the projective representations of the symmetries and find a finite number of distinct phases depending on the prime factorization of N. The different phases exhibit characteristic degeneracies in their entanglement spectrum (ES). Apart from these SPT phases, we report the occurrence of parafermion condensate phases for certain values of N. When including an additional Z_N symmetry, we find a non-Abelian group structure under the addition of phases.
In the second part of the thesis, we focus on two-dimensional lattice models of spinless fermions. First, we demonstrate the detection of a fractional Chern insulator (FCI) phase in the Haldane honeycomb model on an infinite cylinder by means of the density-matrix renormalization group (DMRG). We report the calculation of several quantities characterizing the topological order of the state, i.e., (i)~the Hall conductivity, (ii)~the spectral flow and level counting in the ES, (iii)~the topological entanglement entropy, and (iv)~the charge and topological spin of the quasiparticles. Since we have access to sufficiently large system sizes without band projection with DMRG, we are in addition able to investigate the transition from a metal to the FCI at small interactions which we find to be of first order.
In a further study, we consider a time-reversal symmetric model on the honeycomb lattice where a Chern insulator (CI) induced by next-nearest neighbor interactions has been predicted by mean field theory. However, various subsequent studies challenged this picture and it was still unclear whether the CI would survive quantum fluctuations. We therefore map out the phase diagram of the model as a function of the interactions on an infinite cylinder with DMRG and find evidence for the absence of the CI phase. However, we report the detection of two novel charge-ordered phases and corroborate the existence of the remaining phases that had been predicted in mean field theory. Furthermore, we characterize the transitions between the various phases by studying the behavior of correlation length and entanglement entropy at the phase boundaries. Finally, we develop an improvement to the DMRG algorithm for fermionic lattice models on cylinders. By using a real space representation in the direction along the cylinder and a real space representation in the perpendicular direction, we are able to use the momentum around the cylinder as conserved quantity to reduce computational costs. We benchmark the method by studying the interacting Hofstadter model and report a considerable speedup in computation time and a severely reduced memory usage.
|
4 |
Quasiparticles in Quantum Many-Body SystemsManna, Sourav 15 September 2020 (has links)
Topologically ordered phases flamboyance a cornucopia of intriguing phenomena that cannot be perceived in the conventional phases including the most striking property of hosting anyon quasiparticles having fractional charges and fractional statistics. Such phases were discovered with the remarkable experiment of the fractional quantum Hall effect and are drawing a lot of recognition.
Realization of these phases on lattice systems and study of the anyon quasiparticles there are important and interesting avenue to research in unraveling new physics, which can not be found in the continuum, and this thesis is an important contribution in that direction. Also such lattice models hosting anyons are particularly important to control the movement of anyons while experimentally implemented with ultra-cold atoms in optical lattices. We construct lattice models by implementing analytical states and parent Hamiltonians on two-dimensional plane hosting non-Abelian anyons, which are proposed candidates for quantum computations. Such lattice models are suitable to create both quasiholes and quasielectrons in the similar way and thereby avoiding the singularity problem for the quasielectrons in continuum. Anyons in these models are found to be well-screened with proper charges and right statistics. Going beyond two dimensions, we unravel the intriguing physics of topologically ordered phases of matter in fractional dimensions such as in the fractal lattices by employing our model constructions of analytical states and parent Hamiltonians there. We find the anyons to be well-screened with right charges and statistics for all dimensions. Our work takes the first step in bridging the gap between two dimensions and one dimension in addressing topological phases which reveal new physics. Our constructions are particularly important in this context since such lattices lack translational symmetry and hence become unsuitable for the fractional Chern insulator implementations. The special features of topologically ordered phases make these difficult to probe and hence the detection of topological quantum phase transitions becomes challenging. The existing probes suffer from shortcomings uo-to a large extent and therefore construction of new type of probes become important and are on high demand. The robustness of anyon properties draw our attention to propose these as detector of topological quantum phase transitions with significant advantages including the facts that these are numerically cheaper probes and are independent of the boundary conditions. We test our probe in three different examples and find that simple properties like anyon charges detect the transitions. / Topologisch geordnete Phasen extravagieren ein Füllhorn faszinierender Phänomene, die in den herkömmlichen Phasen nicht wahrgenommen werden können, einschließlich der auffälligsten Eigenschaft, Quasiteilchen mit fraktionierten Ladungen und fraktion- ierten Statistiken aufzunehmen. Solche Phasen wurden mit dem bemerkenswerten Exper- iment des fraktionierten Quanten-Hall-Effekts entdeckt und finden viel Anerkennung.
Die Realisierung dieser Phasen auf Gittersystemen und die Untersuchung der Anyon- Quasiteilchen sind wichtige und interessante Wege zur Erforschung der Entschlüsselung neuer Physik, die im Kontinuum nicht zu finden sind, und diese These ist ein wichtiger Beitrag in diese Richtung. Auch solche Gittermodelle, die Anyons enthalten, sind beson- ders wichtig, um die Bewegung von Anyons zu steuern, während sie experimentell mit ultrakalten Atomen in optischen Gittern implementiert werden. Wir konstruieren Gittermodelle, indem wir analytische Zustände und Eltern-Hamiltonianer auf einer zwei- dimensionalen Ebene implementieren, die nicht-abelsche Anyons enthält, die als Kan- didaten für Quantenberechnungen vorgeschlagen werden. Solche Gittermodelle sind geeignet, sowohl Quasi-Löcher als auch Quasielektronen auf ähnliche Weise zu erzeu- gen und dadurch das Singularitätsproblem für die Quasielektronen im Kontinuum zu vermeiden. Jeder in diesen Modellen wird mit angemessenen Gebühren und richtigen Statistiken gut überprüft. Über zwei Dimensionen hinaus enträtseln wir die faszinierende Physik topologisch geordneter Phasen der Materie in fraktionierten Dimensionen wie in den fraktalen Gittern, indem wir dort unsere Modellkonstruktionen von analytischen Zuständen und Eltern-Hamiltonianern verwenden. Wir finden, dass die Anyons mit den richtigen Gebühren und Statistiken für alle Dimensionen gut überprüft werden. Unsere Arbeit macht den ersten Schritt, um die Lücke zwischen zwei Dimensionen und einer Dimension zu schließen und topologische Phasen anzugehen, die neue Physik enthüllen. Unsere Konstruktionen sind in diesem Zusammenhang besonders wichtig, da solche Gitter keine Translationssymmetrie aufweisen und daher für die fraktionierten Chern- Isolatorimplementierungen ungeeignet werden. Die besonderen Merkmale topologisch geordneter Phasen machen es schwierig, diese zu untersuchen, und daher wird die Detek- tion topologischer Quantenphasenübergänge schwierig. Die vorhandenen Sonden leiden in hohem Maße unter Mängeln, weshalb die Konstruktion neuer Sondenarten wichtig wird und eine hohe Nachfrage besteht. Die Robustheit der Anyon-Eigenschaften lenkt unsere Aufmerksamkeit darauf, diese als Detektor für topologische Quantenphasenübergänge mit signifikanten Vorteilen vorzuschlagen, einschließlich der Tatsache, dass dies numerisch billigere Sonden sind und von den Randbedingungen unabhängig sind. Wir testen unsere Sonde in drei verschiedenen Beispielen und stellen fest, dass einfache Eigenschaften wie Ladungen die Übergänge erfassen.
|
Page generated in 0.0561 seconds