Spelling suggestions: "subject:"topologische 2zustand"" "subject:"topologische randzustand""
1 |
Symmetry-enriched topological states of matter in insulators and semimetalsLau, Alexander 13 March 2018 (has links) (PDF)
Topological states of matter are a novel family of phases that elude the conventional Landau paradigm of phase transitions. Topological phases are characterized by global topological invariants which are typically reflected in the quantization of physical observables. Moreover, their characteristic bulk-boundary correspondence often gives rise to robust surface modes with exceptional features, such as dissipationless charge transport or non-Abelian statistics. In this way, the study of topological states of matter not only broadens our knowledge of matter but could potentially lead to a whole new range of technologies and applications. In this light, it is of great interest to find novel topological phases and to study their unique properties.
In this work, novel manifestations of topological states of matter are studied as they arise when materials are subject to additional symmetries. It is demonstrated how symmetries can profoundly enrich the topology of a system. More specifically, it is shown how symmetries lead to additional nontrivial states in systems which are already topological, drive trivial systems into a topological phase, lead to the quantization of formerly non-quantized observables, and give rise to novel manifestations of topological surface states. In doing so, this work concentrates on weakly interacting systems that can theoretically be described in a single-particle picture. In particular, insulating and semi-metallic topological phases in one, two, and three dimensions are investigated theoretically using single-particle techniques.
|
2 |
Symmetry-enriched topological states of matter in insulators and semimetalsLau, Alexander 13 March 2018 (has links)
Topological states of matter are a novel family of phases that elude the conventional Landau paradigm of phase transitions. Topological phases are characterized by global topological invariants which are typically reflected in the quantization of physical observables. Moreover, their characteristic bulk-boundary correspondence often gives rise to robust surface modes with exceptional features, such as dissipationless charge transport or non-Abelian statistics. In this way, the study of topological states of matter not only broadens our knowledge of matter but could potentially lead to a whole new range of technologies and applications. In this light, it is of great interest to find novel topological phases and to study their unique properties.
In this work, novel manifestations of topological states of matter are studied as they arise when materials are subject to additional symmetries. It is demonstrated how symmetries can profoundly enrich the topology of a system. More specifically, it is shown how symmetries lead to additional nontrivial states in systems which are already topological, drive trivial systems into a topological phase, lead to the quantization of formerly non-quantized observables, and give rise to novel manifestations of topological surface states. In doing so, this work concentrates on weakly interacting systems that can theoretically be described in a single-particle picture. In particular, insulating and semi-metallic topological phases in one, two, and three dimensions are investigated theoretically using single-particle techniques.
|
Page generated in 0.0952 seconds