• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Růst vodní vegetace v rekreačně využívaných rybnících Bolevecké soustavy v Plzni / Growth of aquatic vegetation in fish ponds used for recreation - Bolevecká soustava near Plzeň.

Pták, Martin January 2012 (has links)
The aim of this diploma thesis was to clarify the differences among three different ponds (Bolevecký, Třemošenský, Šídlovský) situated in Pilsen. All of the above mentioned ponds are recreational areas where Bolevecký pond is best known for his water quality improvements since 2006 (after application of Fe and Al - colagulants and also fish - stock changes). The main difference was based on the growth of submersed water plants. The macrophytes were growing slowly or not at all in Bolevecký pond. There was a huge expansion of macrophytes (mainly Myriophyllum spicatum species) in Třemošenský and Šídlovský ponds therefore the water plants must be regulated during summer seasons by mechanical harvesting. The water in all three ponds proves the same qualities but the differences may be found in the nutrient composition of sediments. The fractionation analysis (the founders Psenner and Puczsko) confirmed the fact that all localities are poor in phosphorus however the differences were found in content of iron. The increased content of iron was observed in sediments of Šídlovksý and Třemošenský ponds (mainly in BD fraction - the iron was unstable under redox potential changes). The result of this analysis proves that phosphorus is potentially more available for macrophytes in sediments of Třemošenský and Šídlovský...
2

Phosphorus Requirement and Chemical Fate in Containerized Nursery Crop Production

Shreckhise, Jacob Hamilton 09 July 2018 (has links)
Environmental contamination issues related to phosphorus (P) in surface waters substantiates the need to identify minimally-sufficient P fertilization amounts for production of containerized nursery crops and better understand the effect of routine amendments (i.e., dolomite [DL] and micronutrient fertilizer [MF]) added to pine bark substrates on chemical fate of P fertilizer. Four studies were conducted to accomplish two overarching objectives: 1) determine the minimum P fertilization amount and corresponding pore-water P concentration needed to achieve maximal growth of common containerized nursery crops and 2) determine the effect of DL and MF amendments in pine bark on P retention during irrigation and P fractions in substrate pore-water. In a fertigation, greenhouse study, calculated lowest P-fertilizer concentration that sustained maximal growth in Hydrangea paniculata ‘Limelight’ (panicle hydrangea) and Rhododendron ‘Karen’ (azalea) was 4.7 and 2.9 mg·L⁻¹ , respectively, and shoot growth Ilex crenata ‘Helleri’ (holly) was the same when fertilized with 0.5 to 6.0 mg·L⁻¹ P. Porewater P concentrations corresponding with treatments that sustained maximal growth of panicle hydrangea, azalea and holly were as low as 0.6, 2.2 and 0.08 mg·L⁻¹ P, respectively. In a separate study, utilizing low-P controlled-release fertilizers (CRFs), shoot growth of Hydrangea macrophylla ‘P11HM-11’ (bigleaf hydrangea) produced in two ecoregions was maximal when fertilized with as little as 0.3 g CRF-P per 3.8-L container, a 50% P reduction from the industrystandard CRF. Holly required 0.2 or 0.4 g CRF-P depending on ecoregion. Mean pore-water P concentrations that corresponded with highest SDW were 0.8 and 1.2 mg·L⁻¹ for hydrangea and holly, respectively. When irrigating fallow pine bark columns containing CRF for 48 d, amending pine bark with DL and MF reduced orthophosphate-P (OP-P) leachate concentrations by ≈ 70%, most of which was retained within the substrate. In a greenhouse study, containerized Lagerstroemia ‘Natchez’ (crape myrtle) were grown for 91 d in pine bark containing CRF. In pine bark amended with DL and MF, pore-water OP-P and total P concentrations, measured approximately weekly, were reduced by, on average, 64% and 58%, respectively. Total dry weight values of plants grown with DL plus MF or MF-only were 40% higher than those grown with no amendments; however, tissue P amounts and relative P uptake efficiency were the same among plants in these three treatments. Therefore, sorption of OP-P by DL and MF reduced water-extractable OP-P but did not limit P uptake by plants. / Ph. D.

Page generated in 0.0691 seconds