1 |
Chemometric strategies for determining the geochemical association & solid-phase partitioning of selenium : application to soils of the East MidlandsSeed, Kevin J. January 2001 (has links)
No description available.
|
2 |
Influence of Solution Composition and Temperature on the Strontium Content of Amorphous Calcium Carbonate and Subsequent CalciteAngel, Adam M. 15 August 2013 (has links)
The Sr/Ca ratios in calcium carbonate fossils are used by the paleooceanographic community to infer past environmental conditions, such as sea surface temperature and ocean chemistry. The processes of biogenic calcification that produce these chemical signatures are complex and not fully understood, however, and vital effects are known to affect the trace element composition of the CaCO₃ biomineral products. The recent discovery that calcifying organisms produce amorphous calcium carbonate (ACC) as an intermediate phase during the crystallization process calls into question whether this pathway to mineral formation affects trace element distributions in the final product. This non-classical mineralization process raises the question of whether the Sr/Ca ratios of the final products are dependent upon temperature. That is, what is the temperature dependence of Sr/Ca ratios in calcite produced via ACC compared to the measurements obtained from calcite grown by the classical process in laboratory experiments and from biogenic settings.
The goal of this study is to determine the effects of solution chemistry and temperature on the Sr composition of ACC and resultant crystalline CaCO₃. Two types of experiments were designed: First, experiments were conducted to synthesize inorganic ACC in a batch reactor for a suite of selected chemical compositions and allowing this intermediate phase to transform into calcite in the reactant solution. In a second series of experiments, ACC was precipitated by a flow-through method to compare results to the batch reactor experiments. The experimental design focused on determining the Sr/Ca ratio and Sr distribution coefficients (KD, Sr) of the amorphous and final crystalline products. Mg/Ca ratios of 5/1 were found to suppress Sr uptake into ACC by a factor of 25% when the initial Sr solution had concentration of one millimolar. ICP-AES data collected across the 18° to 30°C range showed that the Sr/Ca ratio in both ACC and the resultant calcite was independent of temperature. Upon transformation, the Sr/Ca ratios of both the ACC and calcite product were found to be similar, showing that Sr/Ca ratios were independent of the transformation process. Analysis of the data determined KD, Sr values of 0.564(±0.006) for ACC and 0.466(±0.009) for the resultant calcite in the 18-30°C temperature range.
The findings show that the Sr/Ca ratios of ACC and the transformed calcite are independent of temperature. However, the corresponding KD, Sr values exceed those reported for calcite grown by classical processes by an order of magnitude. The findings for the inorganic calcite yield KD, Sr values up to four times higher than those found in biogenic calcites. Because the findings of this study show that Sr/Ca is independent of temperature, this study calls into question whether previously reported Sr/Ca measurements in biogenic calcites should be revisited. It is plausible that biological factors have a significant influence on trace element incorporation into biogenic calcite. Vital effects, such as the influence of macromolecules during the ion uptake process, may regulate the apparent Sr/Ca versus temperature trends observed in marine paleontology. Higher KD, Sr values in marine calcifiers may indicate that organisms use the non-classical mineralization pathway in whole or in part. Future studies of trace element incorporation in calcifying species should consider the pathway to mineralization in tandem with interpretations of environmental controls on distribution coefficients. / Master of Science
|
3 |
Constraining Metamorphic and Tectonic Evolution in Convergent Terranes: How Trace Elements and Mineral Inclusions Shape Mechanical and Reconstructive ModelsAshley, Kyle T. 01 June 2015 (has links)
Conventional thermobarometry in metamorphic systems has been primarily limited to constraining peak temperature (or pressure) along a generalized P-T loop. This is largely attributed to the assumption that mineral assemblages and chemistries achieve a state closest to equilibrium with the maximum thermal (and therefore energetic) input at these peak conditions. However, this traditional approach is limited in providing much information about the evolution of a metamorphic terrane, which is modified by tectonic (kinematic) forces, fluid and component mobility, and heating duration.
The ubiquity of quartz in the continental crust has driven much interest in using the phase for thermobarometric purposes. In this dissertation, I discss the application of elastic theory in reconstructing conditions of inclusion encapsulation through inclusion pressure estimation with Raman spectroscopy. In some instances, overpressuring of quartz inclusions in garnet give evidence for high-pressure formation conditions. When analyses are collected from garnet core to rim, pressure paths along garnet growth can be inferred (if temperature can be reasonably estimated). In high-T, low-P terranes, quartz may become dilated if the inclusion adheres to the host. If a quartz inclusion is sufficiently stretched, transformation to a low-density polymorph may occur.
Trace element uptake, particularly Ti, have been characterized in quartz and understood to be the result of a temperature- (and to a lesser extent, pressure-) sensitive substitution for Si4+. However, the application of the Ti-in-quartz thermobarometer in quartz mylonites has led to mixed results due to the low-Ti resetting that occurs with dynamic recrystallization. We applied defect energy simulations and took a global assessment of deformed quartz trace element chemistries to infer that sweeping grain boundaries provide short pathways that allows localized re-equilibration with a Ti-undersaturated medium, resulting in Ti removal from the quartz lattice. In addition, thermodynamic pseudosection modeling has provided a method to assess Ti activity as a dynamic parameter – one that evolves as the phase stability changes through prograde and retrograde metamorphic reactions. With this understanding, better growth-composition models can be derived to infer complex pressure-temperature-time-deformation (P-T-t-D) histories of metamorphic rocks.
These techniques and results are coupled with conventional thermobarometry techniques to provide a more comprehensive picture of the conditions experienced by a rock through the evolution, from burial to exhumation to the Earth's surface. The thermal evolution is used to provide conceptual thermal-kinematic models to explain tectonic evolution and heat advection in the continental lithosphere in ancient mountain belts. / Ph. D.
|
Page generated in 0.15 seconds