161 |
A Bayesian Approach to D2D Proximity Estimation using Radio CSI MeasurementsBezerra, Lucas 12 1900 (has links)
Channel State Information (CSI) refers to a set of measurements used to characterize a radio communication link. Radio infrastructure collects CSI and derives useful metrics that indicate changes to modulation and coding to be made to improve the link performance (e.g. throughput, reliability). The CSI, however, has a wider potential use. It contains an environment-specific signature that can be used to extract information about users’ position and activity.
In our work, we explore the problem of proximity estimation, which consists of identifying how close a pair of devices are to each other. By assuming that Cellular Base Stations (BSs) are distributed spatially according to a Poisson Point Process (PPP), and that the channel is under Rayleigh fading, we were able to probabilistically model radio measurements and use Bayesian inference to estimate the separation between two devices given their measurements only.
We first explore a shadowless channel model, then we investigate how spatially-correlated shadowing can prove useful for estimation. For both cases, Bayesian estimators are proposed and tested through simulations. We also perform experiments and evaluate how well the estimators fit to actual data.
|
162 |
Developing and utilizing the wavefield kinematics for efficient wavefield extrapolationWaheed, Umair bin 08 1900 (has links)
Natural gas and oil from characteristically complex unconventional reservoirs, such
as organic shale, tight gas and oil, coal-bed methane; are transforming the global energy market. These conventional reserves exist in complex geologic formations where conventional seismic techniques have been challenged to successfully image the subsurface. To acquire maximum benefits from these unconventional reserves, seismic anisotropy must be at the center of our modeling and inversion workflows.
I present algorithms for fast traveltime computations in anisotropic media. Both ray-based and finite-difference solvers of the anisotropic eikonal equation are developed. The proposed algorithms present novel techniques to obtain accurate traveltime solutions for anisotropic media in a cost-efficient manner. The traveltime computation algorithms are then used to invert for anisotropy parameters. Specifically, I develop inversion techniques by using diffractions and diving waves in the seismic data. The diffraction-based inversion algorithm can be combined with an isotropic full-waveform inversion (FWI) method to obtain a high-resolution model for the anellipticity anisotropy parameter. The inversion algorithm based on diving waves is useful for building initial anisotropic models for depth-migration and FWI. I also develop the idea of 'effective elliptic models' for obtaining solutions of the anisotropic two-way wave equation. The proposed technique offers a viable alternative for wavefield computations in anisotropic media using a computationally cheaper wave propagation operator.
The methods developed in the thesis lead to a direct cost savings for imaging and inversion projects, in addition to a reduction in turn-around time. With an eye on the next generation inversion methods, these techniques allow us to incorporate more accurate physics into our modeling and inversion framework.
|
163 |
Hardware accelerated ray tracing of particle systemsLindau, Ludvig January 2020 (has links)
Background. Particle systems are a staple feature of most modern renderers. There are several technical challenges when it comes to rendering transparent particles. Particle sorting along the view direction is required for proper blending and casting shadows from particles requires non-standard shadow algorithms. A recent technology that could be used to adress these technical challenges is hardware accelerated ray tracing. However there is a lack of performance data gathered from this type of hardware. Objectives. The objective of this thesis is to measure the performance of a prototype that uses hardware accelerated ray tracing to render particles that cast shadows. Methods. A prototype is created and measurements of the ray tracing time are made. The scene used for the benchmark test is a densely packed particle volume of highly transparent particles, resulting in a scene that looks similar to smoke. Particles are sorted along a ray by repeatedly tracing rays against the scene and incrementing the ray origin past the previous intersection point until it has passed all the objects that lie along the ray. Results. Only a small number of particles can be rendered if real time rendering speeds are desired. High quality shadows can be produced in a way that is very simple compared to texture based methods. Conclusions. Future hardware speed ups can improve the rendering speeds but more sophisticated sorting methods are needed to render larger amounts of particles.
|
164 |
MICRO-ROS FOR MOBILE ROBOTICS SYSTEMSNguyen, Peter January 2022 (has links)
The complexity of mobile robots increases as more parts are added to the system. Introducing microcontrollers into a mobile robot abstracts and modularises the system architecture, creating a demand for seamless microcontroller integration. The Robot Operating System (ROS) used by ABB’s new mobile robot, the mobile YuMi prototype (mYuMi), allows standardised robot software libraries and packages to simplify robotic creations. As ABB is porting over from ROS1 to ROS2, the ROS2 compatible Microcontroller Robot Operating System (micro-ROS) will be incorporated into the system to smoothly integrate microcontrollers into mYuMi. In order to display the validity of micro-ROS, this project used tracing and latency measurements with external applications to test the remote communication between mYuMi using ROS2 and microcontrollers using micro-ROS, with three different microcontrollers tested. The communication was evaluated in different scenarios with a test bench, using ping pong communication to get the round-trip time. A reinforcement of the test results was presented by demonstrating the use of micro-ROS live in a prototype developed, where mYuMi controlled a 1D rangefinder and an RC servo motor by utilising two microcontrollers. The results concluded that the micro-ROS delay could be analysed in theory with external applications, equivalent micro-ROS functionality should apply to most microcontrollers, and the test results and prototype displayed the potential of micro-ROS matching ROS2 in terms of delay and stability.
|
165 |
Pay tracing tools for high frequency electromagnetics simulationsSefi, Sandy January 2003 (has links)
Over the past 20 years, the development in ComputationalElectromagnetics has produced a vast choice of methods based onthe large number of existing mathematical formulations of theMaxwell equations. None of them dominate over the others,instead they complement each other and the choice of methoddepends on the frequency range of the electromagnetic waves.This work is focused on the most popular method in the highfrequency scenario, namely the Geometrical Theory ofDiffraction (GTD). The main advantage of GTD is the ability topredict the electromagnetic field asymptotically in the limitof vanishing wavelength, when other methods, such as the Methodof Moments, become computationally too expensive. The low cost of GTD is due to both the fact that there is noruntime penalty in increasing the frequency and that the raytracing, which GTD is based on, is a geometrical technique. Thecomplexity is then no longer dependent on electrical size ofthe problem but instead on geometrical sub problems which aremanageable. For industrial applications the geometricalstructures, with which the rays interact, are modelled bytrimmed Non-Uniform Rational B-Spline (NURBS) surfaces, themost recent standard used to represent complex free-formgeometries. Due to the introduction of NURBS, the geometrical subproblems tend to be mathematically and numerically cumbersome,but they can be highly simplified by proper Object Orientedprogramming techniques. This allowed us to create a flexiblesoftware package, MIRA: Modular Implementation of Ray Tracingfor Antenna Applications, with an architecture that separatesmathematical algorithms from their implementation details andmodelling. In addition, its design supports hybridisationtechniques in combination with other methods such as Method ofMoment (MoM) and Physical Optics (PO). In a first hybrid application, a triangle-based PO solveruses the shadowing information calculated with the ray tracerpart of MIRA. The occlusion is performed between triangles andtheir facing NURBS surfaces rather than between their facingtriangles, thus reducing the complexity. Then the shadowinginformation is used in an iterative MoM-PO process in order tocover higher frequencies, where the contribution of theshadowing effects, in the hybrid formulation, is believed to bemore significant. Thesis presented at the Royal Institute of Technology ofStockholm in 2003, for the degree of Licentiate in ScientificComputing. / NR 20140805
|
166 |
Trp53 Mutation in Keratin 5 (Krt5)-Expressing Basal Cells Facilitates the Development of Basal Squamous-Like Invasive Bladder Cancer in the Chemical Carcinogenesis of Mouse Bladder / ケラチン5発現基底細胞でのTrp53遺伝子変異はマウス化学発癌モデルの基底扁平上皮様サブタイプ筋層浸潤性膀胱癌の形成を促進するMasuda, Norihiko 24 January 2022 (has links)
京都大学 / 新制・論文博士 / 博士(医学) / 乙第13466号 / 論医博第2253号 / 新制||医||1055(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 村川 泰裕, 教授 中島 貴子, 教授 藤田 恭之 / 学位規則第4条第2項該当 / Doctor of Medical Science / Kyoto University / DFAM
|
167 |
Dlx Genes, Neurogenesis and Regeneration in the Adult Zebrafish BrainWeinschutz Mendes, Hellen 09 January 2020 (has links)
The Dlx homeobox genes encode homeodomain transcription factors that are involved in
multiple developmental aspects. In the brain, these genes take part in neuronal migration and
differentiation, more precisely in the migration and differentiation of GABAergic neurons.
Dysfunctions in the GABAergic system can lead to various pathological conditions, where
impaired inhibitory function is one of the main causes of several neuropathies characterized by
neuronal hyperexcitability. The Dlx genes are organized as bi-gene clusters and highly
conserved cis-regulatory elements have been previously characterized to be fundamental for
the regulation of Dlx expression in developing embryos of different vertebrates. The activity of
these regulatory elements and the Dlx genes has been well studied in developmental stages of
mice and zebrafish, but little is known about their activity in the adult brain. The extensive
neurogenesis that takes place in the adult zebrafish brain provides an ideal platform for the
visualization of mechanisms involving dlx genes during adulthood and their possible
involvement in adult neurogenesis. Here we show novel information concerning the expression
of dlx1a, dlx2a, dlx5a and dlx6a in the adult zebrafish brain and provide insight into the identity
of cells that express dlx. We also demonstrate the involvement of dlx genes in brain
regeneration and through lineage tracing, their fate determination in the adult zebrafish brain.
Analyses in the adult zebrafish has revealed that all four dlx paralogs are expressed in the
forebrain and midbrain throughout adulthood and expression is found in almost all areas
presenting continuous proliferation. Most dlx-expressing cells present GABAergic neuronal
identity in the adult forebrain where, in some areas they were identified as the Calbindin
subtype. In some areas of the midbrain, especially within the hypothalamus, many dlxexpressing
cell co-localized with a marker for neural stem cells. However, cells expressing dlx
iii
genes did not co-localize with markers for proliferating cells or for glia. Investigations during
brain regeneration in response to injury in the adult zebrafish brain has revealed that dlx5a
expression decreases shortly after lesion and that the dlx5a/6a bi-gene cluster, more
specifically, dlx5a, is up regulated during the peak of regeneration response proposing a
possible role for dlx during regeneration in adults. Studies of lineage tracing have shown the
progeny of dlx1a/2a-expressing cells in adults are located within small clusters in different areas
of the adult brain where they seem to become mature neurons. Our observations provide a
better understanding about the role of dlx genes during adulthood, further contributing to the
general knowledge of the molecular pathways involved in adult neurogenesis and regeneration
in the zebrafish adult brain.
|
168 |
Quantitative Analyses of the Projection of Individual Neurons from the Midline Thalamic Nuclei to the Striosome and Matrix Compartments of the Rat Striatum / ラット線条体ストリオソーム・マトリックス構造における視床正中線核群単一ニューロン投射の定量的解析Unzai, Tomo 23 January 2018 (has links)
京都大学 / 0048 / 新制・論文博士 / 博士(医学) / 乙第13142号 / 論医博第2142号 / 新制||医||1026(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 伊佐 正, 教授 野田 亮, 教授 岩田 想 / 学位規則第4条第2項該当 / Doctor of Medical Science / Kyoto University / DFAM
|
169 |
Using Process Tracing and Computational Modeling to Investigate Cognition During Risky Decision MakingPettit, Elizabeth Jean 22 April 2021 (has links)
No description available.
|
170 |
Hydrogeology and Groundwater Flow of the Morrell Cave Spring Shed, Sullivan County, TennesseeBurnham, Taylor G 01 December 2013 (has links) (PDF)
Groundwater flow through fractured karst conduit systems can be complex and difficult to diagnose. This project explores the role of geologic structures that influence the location of recharge points, flow paths, velocities, and discharge locations within Morrell Cave and at the resurgence of Morrell Spring, both of which are located near the city of Bluff City, TN. Understanding of the groundwater sources and flow paths in the Bluff City area will allow future researchers to more readily identify sources of pollution and better resolve local agricultural well drawdown conflicts among residents. The objectives of this project are to: 1) identify the active allogenic recharge sources of Morrell Spring, the largest known spring in the Bluff City area; 2) delineate a springshed for Morrell Spring and; 3) diagnose the structural controls for groundwater flow paths to Morrell Spring. It was found that surface streams flowing across the Sevier Shale on the northern slope of Holston Mountain enter the subsurface karst system through swallets along the Sevier shale and the Jonesboro Limestone contact. Once underground the water flows to the NW following 2 dominant joint sets until it reaches the NE/SW oriented fault line along which Morrell Cave has formed. Upon entering the cave the groundwater flows to the NE to Morrell Spring and into the South Fork Holston River.
|
Page generated in 0.0756 seconds