1 |
Real-time Traffic Safety Evaluation Models And Their Application For Variable Speed LimitsYu, Rongjie 01 January 2013 (has links)
Traffic safety has become the first concern in the transportation area. Crashes have cause extensive human and economic losses. With the objective of reducing crash occurrence and alleviating crash injury severity, major efforts have been dedicated to reveal the hazardous factors that affect crash occurrence at both the aggregate (targeting crash frequency per segment, intersection, etc.,) and disaggregate levels (analyzing each crash event). The aggregate traffic safety studies, mainly developing safety performance functions (SPFs), are being conducted for the purpose of unveiling crash contributing factors for the interest locations. Results of the aggregate traffic safety studies can be used to identify crash hot spots, calculate crash modification factors (CMF), and improve geometric characteristics. Aggregate analyses mainly focus on discovering the hazardous factors that are related to the frequency of total crashes, of specific crash type, or of each crash severity level. While disaggregate studies benefit from the reliable surveillance systems which provide detailed real-time traffic and weather data. This information could help in capturing microlevel influences of the hazardous factors which might lead to a crash. The disaggregate traffic safety models, also called real-time crash risk evaluation models, can be used in monitoring crash hazardousness with the real-time field data fed in. One potential use of real-time crash risk evaluation models is to develop Variable Speed Limits (VSL) as a part of a freeway management system. Models have been developed to predict crash occurrence to proactively improve traffic safety and prevent crash occurrence. iv In this study, first, aggregate safety performance functions were estimated to unveil the different risk factors affecting crash occurrence for a mountainous freeway section. Then disaggregate real-time crash risk evaluation models have been developed for the total crashes with both the machine learning and hierarchical Bayesian models. Considering the need for analyzing both aggregate and disaggregate aspects of traffic safety, systematic multi-level traffic safety studies have been conducted for single- and multi-vehicle crashes, and weekday and weekend crashes. Finally, the feasibility of utilizing a VSL system to improve traffic safety on freeways has been investigated. This research was conducted based on data obtained from a 15-mile mountainous freeway section on I-70 in Colorado. The data contain historical crash data, roadway geometric characteristics, real-time weather data, and real-time traffic data. Real-time weather data were recorded by 6 weather stations installed along the freeway section, while the real-time traffic data were obtained from the Remote Traffic Microwave Sensor (RTMS) radars and Automatic Vechicle Identification (AVI) systems. Different datasets have been formulated from various data sources, and prepared for the multi-level traffic safety studies. In the aggregate traffic safety investigation, safety performance functions were developed to identify crash occurrence hazardous factors. For the first time real-time weather and traffic data were used in SPFs. Ordinary Poisson model and random effects Poisson models with Bayesian inference approach were employed to reveal the effects of weather and traffic related variables on crash occurrence. Two scenarios were considered: one seasonal based case and one crash type v based case. Deviance Information Criterion (DIC) was utilized as the comparison criterion; and the correlated random effects Poisson models outperform the others. Results indicate that weather condition variables, especially precipitation, play a key role in the safety performance functions. Moreover, in order to compare with the correlated random effects Poisson model, Multivariate Poisson model and Multivariate Poisson-lognormal model have been estimated. Conclusions indicate that, instead of assuming identical random effects for the homogenous segments, considering the correlation effects between two count variables would result in better model fit. Results from the aggregate analyses shed light on the policy implication to reduce crash frequencies. For the studied roadway segment, crash occurrence in the snow season have clear trends associated with adverse weather situations (bad visibility and large amount of precipitation); weather warning systems can be employed to improve road safety during the snow season. Furthermore, different traffic management strategies should be developed according to the distinct seasonal influence factors. In particular, sites with steep slopes need more attention from the traffic management center and operators especially during snow seasons to control the excess crash occurrence. Moreover, distinct strategy of freeway management should be designed to address the differences between single- and multi-vehicle crash characteristics. In addition to developing safety performance functions with various modeling techniques, this study also investigates four different approaches of developing informative priors for the independent variables. Bayesian inference framework provides a complete and coherent way to balance the empirical data and prior expectations; merits of these informative priors have been tested along with two types of Bayesian hierarchical models (Poisson-gamma and Poisson- vi lognormal models). Deviance Information Criterion, R-square values, and coefficients of variance for the estimations were utilized as evaluation measures to select the best model(s). Comparisons across the models indicate that the Poisson-gamma model is superior with a better model fit and it is much more robust with the informative priors. Moreover, the two-stage Bayesian updating informative priors provided the best goodness-of-fit and coefficient estimation accuracies. In addition to the aggregate analyses, real-time crash risk evaluation models have been developed to identify crash contributing factors at the disaggregate level. Support Vector Machine (SVM), a recently proposed statistical learning model and Hierarchical Bayesian logistic regression models were introduced to evaluate real-time crash risk. Classification and regression tree (CART) model has been developed to select the most important explanatory variables. Based on the variable selection results, Bayesian logistic regression models and SVM models with different kernel functions have been developed. Model comparisons based on receiver operating curves (ROC) demonstrate that the SVM model with Radial basis kernel function outperforms the others. Results from the models demonstrated that crashes are likely to happen during congestion periods (especially when the queuing area has propagated from the downstream segment); high variation of occupancy and/or volume would increase the probability of crash occurrence. Moreover, effects of microscopic traffic, weather, and roadway geometric factors on the occurrence of specific crash types have been investigated. Crashes have been categorized as rear- vii end, sideswipe, and single-vehicle crashes. AVI segment average speed, real-time weather data, and roadway geometric characteristics data were utilized as explanatory variables. Conclusions from this study imply that different active traffic management (ATM) strategies should be designed for three- and two-lane roadway sections and also considering the seasonal effects. Based on the abovementioned results, real-time crash risk evaluation models have been developed separately for multi-vehicle and single-vehicle crashes, and weekday and weekend crashes. Hierarchical Bayesian logistic regression models (random effects and random parameter logistic regression models) have been introduced to address the seasonal variations, crash unit level’s diversities, and unobserved heterogeneity caused by geometric characteristics. For the multi-vehicle crashes: congested conditions at downstream would contribute to an increase in the likelihood of multi-vehicle crashes; multi-vehicle crashes are more likely to occur during poor visibility conditions and if there is a turbulent area that exists downstream. Drivers who are unable to reduce their speeds timely are prone to causing rear-end crashes. While for the singlevehicle crashes: slow moving traffic platoons at the downstream detector of the crash occurrence locations would increase the probability of single-vehicle crashes; large variations of occupancy downstream would also increase the likelihood of single-vehicle crash occurrence. Substantial efforts have been dedicated to revealing the hazardous factors that affect crash occurrence from both the aggregate and disaggregate level in this study, however, findings and conclusions from these research work need to be transferred into applications for roadway design and freeway management. This study further investigates the feasibility of utilizing Variable Speed Limits (VSL) system, one key part of ATM, to improve traffic safety on freeways. A proactive traffic safety improvement VSL control algorithm has been proposed. First, an viii extension of the traffic flow model METANET was employed to predict traffic flow while considering VSL’s impacts on the flow-density diagram; a real-time crash risk evaluation model was then estimated for the purpose of quantifying crash risk; finally, the optimal VSL control strategies were achieved by employing an optimization technique of minimizing the total predicted crash risks along the VSL implementation area. Constraints were set up to limit the increase of the average travel time and differences between posted speed limits temporarily and spatially. The proposed VSL control strategy was tested for a mountainous freeway bottleneck area in the microscopic simulation software VISSIM. Safety impacts of the VSL system were quantified as crash risk improvements and speed homogeneity improvements. Moreover, three different driver compliance levels were modeled in VISSIM to monitor the sensitivity of VSL’s safety impacts on driver compliance levels. Conclusions demonstrate that the proposed VSL system could effectively improve traffic safety by decreasing crash risk, enhancing speed homogeneity, and reducing travel time under both high and moderate driver compliance levels; while the VSL system does not have significant effects on traffic safety enhancement under the low compliance scenario. Future implementations of VSL control strategies and related research topics were also discussed.
|
2 |
Development and Applications of a Corridor-Level Approach to Traffic SafetyMcCombs, John M 01 January 2024 (has links) (PDF)
The standard method for assessing traffic safety is to use the predictive method outlined in the Highway Safety Manual (HSM). This method is site-level, data-intensive, and does not account for interactions between sites, making it difficult to assess larger areas. This dissertation develops a corridor-level approach to traffic safety which uses less data than the HSM predictive method and views roadways holistically rather than combinations of individual, independent sites. First, a corridor definition is developed and applied to 10 urban Florida counties with a history of many crashes, resulting in the identification of 1,048 corridors. These corridors were primarily defined using context classification and lane count, with additional considerations for data availability and minimum length. From 2017–2021, these corridors experienced 459,603 unique crashes. After preliminary modeling and scope refinement, 559 corridors received supplemental data collection. Between the two datasets, a total of 11 models were developed using either negative binomial (NB) or random forest (RF) regression. NB models can be used for network screening purposes or identifying the impacts of potential safety improvements, while RF models can be used to identify variables important to the accuracy of the prediction. Potential safety improvements identified from the NB models include increasing proactive law enforcement patrols for dangerous driving behaviors and installing corridor lighting in corridors without lighting. While both NB and RF models were accurate, NB models were recommended due to resulting in a definite equation and overdispersion parameter that could be used with the empirical Bayes (EB) method to improve prediction accuracy. Overall, the corridor-level NB models outperformed the HSM models in terms of accuracy and statistical reliability. Using a corridor-level approach can help agencies quickly network screen their systems to identify high-risk corridors in need of safety improvements or supplement site-level analyses.
|
3 |
Preemptivní bezpečnostní analýza dopravního chování z trajektorií / Preemptive Safety Analysis of Road Users' Behavior from TrajectoriesZapletal, Dominik January 2018 (has links)
This work deals with the and preemptive road users behaviour safety analysis problem. Safety analysis is based on a processing of road users trajectories obtained from processed aerial videos captured by drons. A system for traffic conflicts detection from spatial-temporal data is presented in this work. The standard approach for pro-active traffic conflict indicators evaluation was extended by simulating traffic objects movement in the scene using Ackerman steering geometry in order to get more accurate results.
|
4 |
Effect of Pavement Condition on Traffic Crash Frequency and Severity in VirginiaMohagheghi, Ali 30 September 2020 (has links)
Previous studies show that pavement condition properties are significant factors to enhance road safety and riding experience, and pavements with low quality might have inadequate performance in terms of safety and riding experience. Pavement Management System (PMS) databases include pavement properties for each segment of the road collected by the agencies. Understanding the impact of road characteristics on crash frequency is a key step to prevent crashes. Whereas other studies analyzed the effect of different characteristics such as International Roughness Index (IRI), Rutting Depth (RD), Annual Average Daily Traffic (AADT), this thesis analyzed the effect of Critical Condition Index (CCI) on crash frequency, in addition to the other factors identified in previous studies. Other characteristics such as Percentage of Heavy Vehicles, Road Surface Condition, Road Lighting Condition, and Driver Conditions are taken into the consideration. The scope of the study is the interstate highway system in Fairfax County, Virginia. Negative Binomial, Least Square and Nominal Logistic Models were developed, showing that the CCI value is a significant factor to predict the number of crashes, and that it has different effect for different values of AADT. The result of this study is a substantial step towards developing an integrated transportation control and infrastructure management framework. / Master of Science / Many factors cause crashes in the roads. Although there is a common sense that road characteristics such as asphalt quality are important in terms of road safety, there are few studies that scientifically prove that statement. In addition, asphalt maintenance decisions making process is mainly based on cost benefit optimization, and traffic safety is not considered at the process. The purpose of this study is to analyze crashes and road characteristics related to each crash to understand the effect of those characteristics on crash frequency, and eventually, to build a model to predict the number of crashes at each part of the road. The model can help transportation agencies to have a better understanding in terms of safety consequences of their infrastructure management plans. The scope of this study is the highway interstate system in Northern Virginia. Results suggest that pavement condition has a significant impact on crash frequency.
|
5 |
Development of Traffic Safety Zones and Integrating Macroscopic and Microscopic Safety Data Analytics for Novel Hot Zone IdentificationLee, JaeYoung 01 January 2014 (has links)
Traffic safety has been considered one of the most important issues in the transportation field. With consistent efforts of transportation engineers, Federal, State and local government officials, both fatalities and fatality rates from road traffic crashes in the United States have steadily declined from 2006 to 2011.Nevertheless, fatalities from traffic crashes slightly increased in 2012 (NHTSA, 2013). We lost 33,561 lives from road traffic crashes in the year 2012, and the road traffic crashes are still one of the leading causes of deaths, according to the Centers for Disease Control and Prevention (CDC). In recent years, efforts to incorporate traffic safety into transportation planning has been made, which is termed as transportation safety planning (TSP). The Safe, Affordable, Flexible Efficient, Transportation Equity Act - A Legacy for Users (SAFETEA-LU), which is compliant with the United States Code, compels the United States Department of Transportation to consider traffic safety in the long-term transportation planning process. Although considerable macro-level studies have been conducted to facilitate the implementation of TSP, still there are critical limitations in macroscopic safety studies are required to be investigated and remedied. First, TAZ (Traffic Analysis Zone), which is most widely used in travel demand forecasting, has crucial shortcomings for macro-level safety modeling. Moreover, macro-level safety models have accuracy problem. The low prediction power of the model may be caused by crashes that occur near the boundaries of zones, high-level aggregation, and neglecting spatial autocorrelation. In this dissertation, several methodologies are proposed to alleviate these limitations in the macro-level safety research. TSAZ (Traffic Safety Analysis Zone) is developed as a new zonal system for the macroscopic safety analysis and nested structured modeling method is suggested to improve the model performance. Also, a multivariate statistical modeling method for multiple crash types is proposed in this dissertation. Besides, a novel screening methodology for integrating two levels is suggested. The integrated screening method is suggested to overcome shortcomings of zonal-level screening, since the zonal-level screening cannot take specific sites with high risks into consideration. It is expected that the integrated screening approach can provide a comprehensive perspective by balancing two aspects: macroscopic and microscopic approaches.
|
Page generated in 0.0927 seconds