Spelling suggestions: "subject:"traffic sig""
1 |
Traffic Sign Detection and Recognition System for Intelligent VehiclesFeng, Jingwen January 2014 (has links)
Road traffic signs provide instructions, warning information, to regulate driver behavior. In addition, these signs provide a reliable guarantee for safe and convenient driving. The Traffic Sign Detection and Recognition (TSDR) system is one of the primary applications for Advanced Driver Assistance Systems (ADAS). TSDR has obtained a great deal of attention over the recent years. But, it is still a challenging field of image processing.
In this thesis, we first created our own dataset for North American Traffic Signs, which is still being updated. We then decided to choose Histogram Orientation Gradients (HOG) and Support Vector Machines (SVMs) to build our system after comparing them with some other techniques. For better results, we tested different HOG parameters to find the best combination. After this, we developed a TSDR system using HOG, SVM and our new color information extraction algorithm. To reduce time-consumption, we used the Maximally Stable Extremal Region (MSER) to replace the HOG and SVM detection stage. In addition, we developed a new approach based on Global Positioning System (GPS) information other than image processing. At last, we tested these three systems; the results show that all of them can recognize traffic signs with a good accuracy rate. The MSER based system is faster than the one using only HOG and SVM; and, the GPS based system is even faster than the MSER based system.
|
2 |
An Analysis of Traffic Sign Performance for the Establishment of a Maintenance PlanBoggs, Wesley Bill 01 December 2012 (has links)
Since the establishment of the first minimum retroreflectivity levels in 1993, agencies and researchers have focused on determining the service life of different sheeting type and color combinations. While deterioration curves and measured retroreflectivity are viable methods for maintaining retroreflectivity compliance, they do not ensure the ability of the traffic sign to convey its intended message. Retroreflectivity efficiency only ensures visibility but does not properly describe the legibility of the sign. Therefore, while agencies across the nation are developing and implementing traffic sign maintenance plans, the emphasis should not be solely placed on visibility.
In order to evaluate the performance of UDOT’s traffic signs, a sample sign population was collected across all four of UDOT’s maintenance regions. Analysis on this sample set not only determined the current rate of compliance, but it also identified several issues seen throughout the population. Signs under UDOT’s jurisdiction are four times more likely to have substantial damage to the sign face than to fail to meet the minimum retroreflectivity levels. Analysis was conducted on determining contributing factors damage rates and it was determined that precipitation, elevation, seasonal temperature swing, and exposure of the sign all contributed to higher rates of damage. Additional analysis was conducted on determining the service life of different type and sheeting combinations. Hindered by the lack of known installation information, the analysis only identified service life as a significant contributor to sheeting deterioration.
Since the majority of new sign installations are prismatic sheeting, the recommended maintenance plan needs to reflect the performance characteristics of this sheeting while continuing to manage the existing sign population. With the combination of UDOT’s current sign knowledge and the sheeting deterioration and damage analysis conducted in this thesis, the feasibility of the five preapproved FHWA methods is discussed. This report concludes with the recommendation of a visual nighttime inspection method due to this method’s ability to assess both the visibility and legibility of traffic signs. This will ensure that UDOT maintains compliance with the retroreflectivity mandate, while improving safety for motorists.
|
3 |
A Contour-based Separation of VerticallyAttached Traffic SignsZhao, Ping January 2007 (has links)
This report presents an algorithm for locating the cut points for and separatingvertically attached traffic signs in Sweden. This algorithm provides severaladvanced digital image processing features: binary image which representsvisual object and its complex rectangle background with number one and zerorespectively, improved cross correlation which shows the similarity of 2Dobjects and filters traffic sign candidates, simplified shape decompositionwhich smoothes contour of visual object iteratively in order to reduce whitenoises, flipping point detection which locates black noises candidates, chasmfilling algorithm which eliminates black noises, determines the final cut pointsand separates originally attached traffic signs into individual ones. At each step,the mediate results as well as the efficiency in practice would be presented toshow the advantages and disadvantages of the developed algorithm. Thisreport concentrates on contour-based recognition of Swedish traffic signs. Thegeneral shapes cover upward triangle, downward triangle, circle, rectangle andoctagon. At last, a demonstration program would be presented to show howthe algorithm works in real-time environment.
|
4 |
A Sensing Methodology for an Intelligent Traffic Sign Inventory and Condition Assessment Using GPS/GIS, Computer Vision and Mobile LiDAR TechnologiesAi, Chengbo 27 March 2013 (has links)
Traffic signs, which transportation agencies must inventory and manage, are one of the most important roadway assets because they are used to ensure roadway safety and provide important travel guidance/information. Traffic sign inventory and condition assessment are two important components that are essential for establishing a cost-effective and sustainable traffic sign management system. Traditionally, state departments of transportation (DOTs) have conducted traffic sign inventory and condition assessment manually, a process that is labor-intensive, time-consuming, and sometimes hazardous to field engineers in the roadway environment. Methods have been developed to automate sign inventory and condition assessment using video log images in previous studies. However, the performance of these methods still needs to be improved. Based on the need to inventory signs and manage them more effectively, this study has two focuses. The first focus is to develop an enhanced traffic sign detection methodology to improve the productivity of an image-based sign inventory for state DOTs. The proposed methodology includes two enhanced algorithms: a) a lighting dependent statistical color model (LD-SCM)-based color segmentation algorithm that is robust to different image lighting conditions, especially adverse lighting and b) an ordinary/partial differential equation (ODE/PDE)-based shape detection algorithm that is immune to discontinuous sign boundaries in a cluttered background. The second focus of the study is to explore a new traffic sign retroreflectivity condition assessment methodology to develop a mobile method that uses emerging computer vision and mobile light detection and ranging (LiDAR) technologies to assess traffic sign retroreflectivity conditions. The proposed methodology includes a) an image-LiDAR registration method employing camera calibration and point co-planarity to register the 3D LiDAR point cloud with 2D video log images, b) a theoretical-empirical normalization scheme to adjust the magnitude of the LiDAR retro-intensity values with respect to LiDAR beam distance and incidence angle based on the radiometric responses, and c) a population-based retroreflectivity condition assessment method to evaluate the adequacy of a traffic sign retroreflectivity condition based on the correlation between the normalized LiDAR retro-intensity and the retroreflectivity values. For the proposed traffic sign detection methodology, comprehensive tests using representative datasets (e.g. with different road functions, data collection sources, and data qualities) were conducted to validate the performance of the two enhanced algorithms and the complete methodology. For the proposed retroreflectivity condition assessment methodology, the fundamental behavior of LiDAR retro-intensity was comprehensively tested and simulated under a controlled lab and roadway environment to quantify the impact of beam distance and incidence angle. A preliminary test on Type 1 engineer grade stop signs was conducted in the field to validate the performance of the proposed sign retroreflectivity condition assessment method. The results from both of the proposed methodologies are promising.
|
5 |
The design of an integrated production and inventory control system for a traffic sign shopBarbosa, Wagner January 1990 (has links)
No description available.
|
6 |
Detecção e classificação de sinalização vertical de trânsito em cenários complexosHoelscher, Igor Gustavo January 2017 (has links)
A mobilidade é uma marca da nossa civilização. Tanto o transporte de carga quanto o de passageiros compartilham de uma enorme infra-estrutura de conexões operados com o apoio de um sofisticado sistema logístico. Simbiose otimizada de módulos mecânicos e elétricos, os veículos evoluem continuamente com a integração de avanços tecnológicos e são projetados para oferecer o melhor em conforto, segurança, velocidade e economia. As regulamentações organizam o fluxo de transporte rodoviário e as suas interações, estipulando regras a fim de evitar conflitos. Mas a atividade de condução pode tornar-se estressante em diferentes condições, deixando os condutores humanos propensos a erros de julgamento e criando condições de acidente. Os esforços para reduzir acidentes de trânsito variam desde campanhas de re-educação até novas tecnologias. Esses tópicos têm atraído cada vez mais a atenção de pesquisadores e indústrias para Sistemas de Transporte Inteligentes baseados em imagens. Este trabalho apresenta um estudo sobre técnicas de detecção e classificação de sinalização vertical de trânsito em imagens de cenários de tráfego complexos. O sistema de reconhecimento visual automático dos sinais destina-se a ser utilizado para o auxílio na atividade de direção de um condutor humano ou como informação para um veículo autônomo. Com base nas normas para sinalização viária, foram testadas duas abordagens para a segmentação de imagens e seleção de regiões de interesse. O primeiro, uma limiarização de cor em conjunto com Descritores de Fourier. Seu desempenho não foi satisfatório. No entanto, utilizando os seus princípios, desenvolveu-se um novo método de filtragem de cores baseado em Lógica Fuzzy que, juntamente com um algoritmo de seleção de regiões estáveis em diferentes tons de cinza (MSER), ganhou robustez à oclusão parcial e a diferentes condições de iluminação. Para classificação, duas Redes Neurais Convolucionais curtas são apresentadas para reconhecer sinais de trânsito brasileiros e alemães. A proposta é ignorar cálculos complexos ou features selecionadas manualmente para filtrar falsos positivos antes do reconhecimento, realizando a confirmação (etapa de detecção) e a classificação simultaneamente. A utilização de métodos do estado da arte para treinamento e otimização melhoraram a eficiência da técnica de aprendizagem da máquina. Além disso, este trabalho fornece um novo conjunto de imagens com cenários de tráfego em diferentes regiões do Brasil, contendo 2.112 imagens em resolução WSXGA+. As análises qualitativas são mostradas no conjunto de dados brasileiro e uma análise quantitativa com o conjunto de dados alemão apresentou resultados competitivos com outros métodos: 94% de acurácia na extração e 99% de acurácia na classificação. / Mobility is an imprint of our civilization. Both freight and passenger transport share a huge infrastructure of connecting links operated with the support of a sophisticated logistic system. As an optimized symbiosis of mechanical and electrical modules, vehicles are evolving continuously with the integration of technological advances and are engineered to offer the best in comfort, safety, speed and economy. Regulations organize the flow of road transportation machines and help on their interactions, stipulating rules to avoid conflicts. But driving can become stressing on different conditions, leaving human drivers prone to misjudgments and creating accident conditions. Efforts to reduce traffic accidents that may cause injuries and even deaths range from re-education campaigns to new technologies. These topics have increasingly attracted the attention of researchers and industries to Image-based Intelligent Transportation Systems. This work presents a study on techniques for detecting and classifying traffic signs in images of complex traffic scenarios. The system for automatic visual recognition of signs is intended to be used as an aid for a human driver or as input to an autonomous vehicle. Based on the regulations for road signs, two approaches for image segmentation and selection of regions of interest were tested. The first one, a color thresholding in conjunction with Fourier Descriptors. Its performance was not satisfactory. However, using its principles, a new method of color filtering using Fuzzy Logic was developed which, together with an algorithm that selects stable regions in different shades of gray (MSER), the approach gained robustness to partial occlusion and to different lighting conditions. For classification, two short Convolutional Neural Networks are presented to recognize both Brazilian and German traffic signs. The proposal is to skip complex calculations or handmade features to filter false positives prior to recognition, making the confirmation (detection step) and the classification simultaneously. State-of-the-art methods for training and optimization improved the machine learning efficiency. In addition, this work provides a new dataset with traffic scenarios in different regions of Brazil, containing 2,112 images in WSXGA+ resolution. Qualitative analyzes are shown in the Brazilian dataset and a quantitative analysis with the German dataset presented competitive results with other methods: 94% accuracy in extraction and 99% accuracy in the classification.
|
7 |
Detecção e classificação de sinalização vertical de trânsito em cenários complexosHoelscher, Igor Gustavo January 2017 (has links)
A mobilidade é uma marca da nossa civilização. Tanto o transporte de carga quanto o de passageiros compartilham de uma enorme infra-estrutura de conexões operados com o apoio de um sofisticado sistema logístico. Simbiose otimizada de módulos mecânicos e elétricos, os veículos evoluem continuamente com a integração de avanços tecnológicos e são projetados para oferecer o melhor em conforto, segurança, velocidade e economia. As regulamentações organizam o fluxo de transporte rodoviário e as suas interações, estipulando regras a fim de evitar conflitos. Mas a atividade de condução pode tornar-se estressante em diferentes condições, deixando os condutores humanos propensos a erros de julgamento e criando condições de acidente. Os esforços para reduzir acidentes de trânsito variam desde campanhas de re-educação até novas tecnologias. Esses tópicos têm atraído cada vez mais a atenção de pesquisadores e indústrias para Sistemas de Transporte Inteligentes baseados em imagens. Este trabalho apresenta um estudo sobre técnicas de detecção e classificação de sinalização vertical de trânsito em imagens de cenários de tráfego complexos. O sistema de reconhecimento visual automático dos sinais destina-se a ser utilizado para o auxílio na atividade de direção de um condutor humano ou como informação para um veículo autônomo. Com base nas normas para sinalização viária, foram testadas duas abordagens para a segmentação de imagens e seleção de regiões de interesse. O primeiro, uma limiarização de cor em conjunto com Descritores de Fourier. Seu desempenho não foi satisfatório. No entanto, utilizando os seus princípios, desenvolveu-se um novo método de filtragem de cores baseado em Lógica Fuzzy que, juntamente com um algoritmo de seleção de regiões estáveis em diferentes tons de cinza (MSER), ganhou robustez à oclusão parcial e a diferentes condições de iluminação. Para classificação, duas Redes Neurais Convolucionais curtas são apresentadas para reconhecer sinais de trânsito brasileiros e alemães. A proposta é ignorar cálculos complexos ou features selecionadas manualmente para filtrar falsos positivos antes do reconhecimento, realizando a confirmação (etapa de detecção) e a classificação simultaneamente. A utilização de métodos do estado da arte para treinamento e otimização melhoraram a eficiência da técnica de aprendizagem da máquina. Além disso, este trabalho fornece um novo conjunto de imagens com cenários de tráfego em diferentes regiões do Brasil, contendo 2.112 imagens em resolução WSXGA+. As análises qualitativas são mostradas no conjunto de dados brasileiro e uma análise quantitativa com o conjunto de dados alemão apresentou resultados competitivos com outros métodos: 94% de acurácia na extração e 99% de acurácia na classificação. / Mobility is an imprint of our civilization. Both freight and passenger transport share a huge infrastructure of connecting links operated with the support of a sophisticated logistic system. As an optimized symbiosis of mechanical and electrical modules, vehicles are evolving continuously with the integration of technological advances and are engineered to offer the best in comfort, safety, speed and economy. Regulations organize the flow of road transportation machines and help on their interactions, stipulating rules to avoid conflicts. But driving can become stressing on different conditions, leaving human drivers prone to misjudgments and creating accident conditions. Efforts to reduce traffic accidents that may cause injuries and even deaths range from re-education campaigns to new technologies. These topics have increasingly attracted the attention of researchers and industries to Image-based Intelligent Transportation Systems. This work presents a study on techniques for detecting and classifying traffic signs in images of complex traffic scenarios. The system for automatic visual recognition of signs is intended to be used as an aid for a human driver or as input to an autonomous vehicle. Based on the regulations for road signs, two approaches for image segmentation and selection of regions of interest were tested. The first one, a color thresholding in conjunction with Fourier Descriptors. Its performance was not satisfactory. However, using its principles, a new method of color filtering using Fuzzy Logic was developed which, together with an algorithm that selects stable regions in different shades of gray (MSER), the approach gained robustness to partial occlusion and to different lighting conditions. For classification, two short Convolutional Neural Networks are presented to recognize both Brazilian and German traffic signs. The proposal is to skip complex calculations or handmade features to filter false positives prior to recognition, making the confirmation (detection step) and the classification simultaneously. State-of-the-art methods for training and optimization improved the machine learning efficiency. In addition, this work provides a new dataset with traffic scenarios in different regions of Brazil, containing 2,112 images in WSXGA+ resolution. Qualitative analyzes are shown in the Brazilian dataset and a quantitative analysis with the German dataset presented competitive results with other methods: 94% accuracy in extraction and 99% accuracy in the classification.
|
8 |
Detecção e classificação de sinalização vertical de trânsito em cenários complexosHoelscher, Igor Gustavo January 2017 (has links)
A mobilidade é uma marca da nossa civilização. Tanto o transporte de carga quanto o de passageiros compartilham de uma enorme infra-estrutura de conexões operados com o apoio de um sofisticado sistema logístico. Simbiose otimizada de módulos mecânicos e elétricos, os veículos evoluem continuamente com a integração de avanços tecnológicos e são projetados para oferecer o melhor em conforto, segurança, velocidade e economia. As regulamentações organizam o fluxo de transporte rodoviário e as suas interações, estipulando regras a fim de evitar conflitos. Mas a atividade de condução pode tornar-se estressante em diferentes condições, deixando os condutores humanos propensos a erros de julgamento e criando condições de acidente. Os esforços para reduzir acidentes de trânsito variam desde campanhas de re-educação até novas tecnologias. Esses tópicos têm atraído cada vez mais a atenção de pesquisadores e indústrias para Sistemas de Transporte Inteligentes baseados em imagens. Este trabalho apresenta um estudo sobre técnicas de detecção e classificação de sinalização vertical de trânsito em imagens de cenários de tráfego complexos. O sistema de reconhecimento visual automático dos sinais destina-se a ser utilizado para o auxílio na atividade de direção de um condutor humano ou como informação para um veículo autônomo. Com base nas normas para sinalização viária, foram testadas duas abordagens para a segmentação de imagens e seleção de regiões de interesse. O primeiro, uma limiarização de cor em conjunto com Descritores de Fourier. Seu desempenho não foi satisfatório. No entanto, utilizando os seus princípios, desenvolveu-se um novo método de filtragem de cores baseado em Lógica Fuzzy que, juntamente com um algoritmo de seleção de regiões estáveis em diferentes tons de cinza (MSER), ganhou robustez à oclusão parcial e a diferentes condições de iluminação. Para classificação, duas Redes Neurais Convolucionais curtas são apresentadas para reconhecer sinais de trânsito brasileiros e alemães. A proposta é ignorar cálculos complexos ou features selecionadas manualmente para filtrar falsos positivos antes do reconhecimento, realizando a confirmação (etapa de detecção) e a classificação simultaneamente. A utilização de métodos do estado da arte para treinamento e otimização melhoraram a eficiência da técnica de aprendizagem da máquina. Além disso, este trabalho fornece um novo conjunto de imagens com cenários de tráfego em diferentes regiões do Brasil, contendo 2.112 imagens em resolução WSXGA+. As análises qualitativas são mostradas no conjunto de dados brasileiro e uma análise quantitativa com o conjunto de dados alemão apresentou resultados competitivos com outros métodos: 94% de acurácia na extração e 99% de acurácia na classificação. / Mobility is an imprint of our civilization. Both freight and passenger transport share a huge infrastructure of connecting links operated with the support of a sophisticated logistic system. As an optimized symbiosis of mechanical and electrical modules, vehicles are evolving continuously with the integration of technological advances and are engineered to offer the best in comfort, safety, speed and economy. Regulations organize the flow of road transportation machines and help on their interactions, stipulating rules to avoid conflicts. But driving can become stressing on different conditions, leaving human drivers prone to misjudgments and creating accident conditions. Efforts to reduce traffic accidents that may cause injuries and even deaths range from re-education campaigns to new technologies. These topics have increasingly attracted the attention of researchers and industries to Image-based Intelligent Transportation Systems. This work presents a study on techniques for detecting and classifying traffic signs in images of complex traffic scenarios. The system for automatic visual recognition of signs is intended to be used as an aid for a human driver or as input to an autonomous vehicle. Based on the regulations for road signs, two approaches for image segmentation and selection of regions of interest were tested. The first one, a color thresholding in conjunction with Fourier Descriptors. Its performance was not satisfactory. However, using its principles, a new method of color filtering using Fuzzy Logic was developed which, together with an algorithm that selects stable regions in different shades of gray (MSER), the approach gained robustness to partial occlusion and to different lighting conditions. For classification, two short Convolutional Neural Networks are presented to recognize both Brazilian and German traffic signs. The proposal is to skip complex calculations or handmade features to filter false positives prior to recognition, making the confirmation (detection step) and the classification simultaneously. State-of-the-art methods for training and optimization improved the machine learning efficiency. In addition, this work provides a new dataset with traffic scenarios in different regions of Brazil, containing 2,112 images in WSXGA+ resolution. Qualitative analyzes are shown in the Brazilian dataset and a quantitative analysis with the German dataset presented competitive results with other methods: 94% accuracy in extraction and 99% accuracy in the classification.
|
9 |
Traffic Sign Classification Using Computationally Efficient Convolutional Neural NetworksEkman, Carl January 2019 (has links)
Traffic sign recognition is an important problem for autonomous cars and driver assistance systems. With recent developments in the field of machine learning, high performance can be achieved, but typically at a large computational cost. This thesis aims to investigate the relation between classification accuracy and computational complexity for the visual recognition problem of classifying traffic signs. In particular, the benefits of partitioning the classification problem into smaller sub-problems using prior knowledge in the form of shape or current region are investigated. In the experiments, the convolutional neural network (CNN) architecture MobileNetV2 is used, as it is specifically designed to be computationally efficient. To incorporate prior knowledge, separate CNNs are used for the different subsets generated when partitioning the dataset based on region or shape. The separate CNNs are trained from scratch or initialized by pre-training on the full dataset. The results support the intuitive idea that performance initially increases with network size and indicate a network size where the improvement stops. Including shape information using the two investigated methods does not result in a significant improvement. Including region information using pretrained separate classifiers results in a small improvement for small complexities, for one of the regions in the experiments. In the end, none of the investigated methods of including prior knowledge are considered to yield an improvement large enough to justify the added implementational complexity. However, some other methods are suggested, which would be interesting to study in future work.
|
10 |
A Robust Traffic Sign Recognition SystemBecer, Huseyin Caner 01 February 2011 (has links) (PDF)
The traffic sign detection and recognition system is an essential part of the driver warning and assistance systems. In this thesis, traffic sign recognition system is studied. We considered circular, triangular and square Turkish traffic signs. For detection stage, we have two different approaches. In first approach, we assume that the detected signs are available. In the second approach, the region of interest of the traffic sign image is given. Traffic sign is extracted from ROI by using a detection algorithm.
In recognition stage, the ring-partitioned method is implemented. In this method, the traffic sign is divided into rings and the normalized fuzzy histogram is used as an image descriptor. The histograms of these rings are compared with the reference histograms. Ring-partitions provide robustness to rotation because the rotation does not change the histogram of the ring. This is very critical for circle signs because rotation is hard to detect in circle signs. To overcome illumination problem, specified gray scale image is used.
To apply this method to triangle and square signs, the circumscribed circle of these shapes is extracted.
Ring partitioned method is tested for the case where the detected signs are available and the region of interests of the traffic sign is given. The data sets contain about 500 static and video captured images and the images in the data set are taken in daytime.
|
Page generated in 0.0796 seconds