• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Discovering Contiguous Sequential Patterns in Network-Constrained Movement

Yang, Can January 2017 (has links)
A large proportion of movement in urban area is constrained to a road network such as pedestrian, bicycle and vehicle. That movement information is commonly collected by Global Positioning System (GPS) sensor, which has generated large collections of trajectories. A contiguous sequential pattern (CSP) in these trajectories represents a certain number of objects traversing a sequence of spatially contiguous edges in the network, which is an intuitive way to study regularities in network-constrained movement. CSPs are closely related to route choices and traffic flows and can be useful in travel demand modeling and transportation planning. However, the efficient and scalable extraction of CSPs and effective visualization of the heavily overlapping CSPs are remaining challenges. To address these challenges, the thesis develops two algorithms and a visual analytics system. Firstly, a fast map matching (FMM) algorithm is designed for matching a noisy trajectory to a sequence of edges traversed by the object with a high performance. Secondly, an algorithm called bidirectional pruning based closed contiguous sequential pattern mining (BP-CCSM) is developed to extract sequential patterns with closeness and contiguity constraint from the map matched trajectories. Finally, a visual analytics system called sequential pattern explorer for trajectories (SPET) is designed for interactive mining and visualization of CSPs in a large collection of trajectories. Extensive experiments are performed on a real-world taxi trip GPS dataset to evaluate the algorithms and visual analytics system. The results demonstrate that FMM achieves a superior performance by replacing repeated routing queries with hash table lookups. BP-CCSM considerably outperforms three state-of-the-art algorithms in terms of running time and memory consumption. SPET enables the user to efficiently and conveniently explore spatial and temporal variations of CSPs in network-constrained movement. / <p>QC 20171122</p>

Page generated in 0.1646 seconds