• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Trajectory Tracking Control Of Unmanned Ground Vehicles In Mixed Terrain

Bayar, Gokhan 01 September 2012 (has links) (PDF)
Mobile robots are commonly used to achieve tasks involving tracking a desired trajectory and following a predefined path in different types of terrains that have different surface characteristics. A mobile robot can perform the same navigation task task over different surfaces if the tracking performance and accuracy are not essential. However, if the tracking performance is the main objective, due to changing the characteristics of wheel-ground interaction, a single set of controller parameters or an equation of motion might be easily failing to guarantee a desired performance and accuracy. The interaction occurring between the wheels and ground can be integrated into the system model so that the performance of the mobile robot can be enhanced on various surfaces. This modeling approach related to wheel-ground interaction can also be incorporated into the motion controller. In this thesis study, modeling studies for a two wheeled differential drive mobile robot and a steerable four-wheeled robot vehicle are carried out. A strategy to achieve better tracking performance for a differential drive mobile robot is developed by introducing a procedure including the effects of external wheel forces / i.e, traction, rolling and lateral. A new methodology to represent the effects of lateral wheel force is proposed. An estimation procedure to estimate the parameters of external wheel forces is also introduced. Moreover, a modeling study that is related to show the effects of surface inclination on tracking performance is performed and the system model of the differential drive mobile robot is updated accordingly. In order to accomplish better trajectory tracking performance and accuracy for a steerable four-wheeled mobile robot, a modeling work that includes a desired trajectory generator and trajectory tracking controller is implemented. The slippage is defined via the slip velocities of steerable front and motorized rear wheels of the mobile robot. These slip velocities are obtained by using the proposed slippage estimation procedure. The estimated slippage information is then comprised into the system model so as to increase the performance and accuracy of the trajectory tracking tasks. All the modeling studies proposed in this study are tested by using simulations and verified on experimental platforms.
2

An Algebraic Analysis Approach to Trajectory Tracking Control / 軌道追従制御への代数解析アプローチ

Sato, Kazuhiro 24 March 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(情報学) / 甲第18406号 / 情博第521号 / 新制||情||92(附属図書館) / 31264 / 京都大学大学院情報学研究科数理工学専攻 / (主査)教授 太田 快人, 教授 梅野 健, 教授 大塚 敏之 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
3

Unconstrained Motion And Constrained Force And Motion Control Of Robots With Flexible Links

Kilicaslan, Sinan 01 February 2005 (has links) (PDF)
New control methods are developed for the unconstrained motion and constrained force and motion control of flexible robots. The dynamic equations of the flexible robots are partitioned as pseudostatic equilibrium equations and deviations from them. The pseudostatic equilibrium considered here is defined as a hypothetical state where the tip point variables have their desired values while the modal variables are instantaneously constant. Then, the control torques for the pseudostatic equilibrium and for the stabilization of the deviation equations are formed in terms of tip point coordinates, modal variables and contact force components. The performances of the proposed methods are illustrated on a planar two-link robot and on a spatial three-link robot. Unmodeled dynamics and measurement noises are also taken into consideration. Performance of the proposed motion control method is compared with the computed torque method.
4

Commande de suivi de trajectoire pour les systèmes complexes et /ou incertains / Trajectory tracking control for complex and / or uncertain systems

Chamekh Hammami, Yosr 20 September 2012 (has links)
Ce travail présente une nouvelle approche basée sur l’étude de la stabilité du mouvement de systèmes continus, multivariables, non linéaires. Elle repose sur l’utilisation de la seconde méthode de Lyapunov pour le calcul d’une loi de commande de suivi de trajectoire d’un processus dont l’évolution est décrite par son équation d’état. Cette commande est réalisée à partir d’informations accessibles concernant le processus et son évolution désirée.Cette approche est étudiée dans le cas où cette commande n’est pas définie.Afin d’étudier la robustesse de cette commande, nous présentons une approche basée sur la stabilité des systèmes non linéaires par le calcul des systèmes majorants. Cette approche est appliquée sur les systèmes décrivant l’erreur entre le système perturbé réel présentant d’importantes imprécisions et/ou incertitudes et le modèle théorique / This work presents a new approach based on the study of the stability of motion of continuous, multivariable, nonlinear systems. It relies on the use of the second Lyapunov method for computing a control law trajectory tracking of a process whose evolution is described by the equation of state. This control is made from accessible information about the process and its desired evolution. This approach is studied in the case where the command is not defined. To investigate the robustness of this control, we present an approach based on the stability of nonlinear systems by calculating the overvaluing systems. This approach is applied to the systems describing the error between the actual perturbed system with significant inaccuracies and / or uncertainties and the theoretical model

Page generated in 0.1124 seconds