• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Combining Transcranial Electrical Stimulation With Magnetic Resonance Imaging In Behavioural Measurements In Health And Disease

Saiote, Catarina 31 January 2014 (has links)
No description available.
2

Working memory training and transcranial electrical brain stimulation

Byrne, Elizabeth Mary January 2018 (has links)
Working memory training improves performance on trained and untrained working memory tasks, but there is little consistent evidence that these gains benefit everyday tasks that rely on working memory. Evidence has shown that transcranial electrical stimulation (tES) may be an effective tool for enhancing cognitive training and promoting transfer. In the first study, participants completed Cogmed working memory training with either active or sham transcranial random noise stimulation (tRNS). Training was associated with substantial gains on the training activities and on transfer measures of working memory with common processing and storage demands to the training tasks. tRNS did not enhance gains on trained or untrained activities. The second study systematically investigated the boundary conditions to training transfer by testing whether gains following backward digit recall (BDR) training transferred within- and across-paradigm to untrained backward recall and n-back tasks with varying degrees of overlap with the training activity. A further aim was to test whether transcranial direct current stimulation (tDCS) enhanced training and transfer. Participants were allocated to one of three conditions: (i) BDR training with active tDCS, (ii) BDR training with sham tDCS, or (iii) visual search control training with sham tDCS. The results indicated that training transfer is constrained by paradigm, but not by stimuli domain or stimuli materials. There was no evidence that tDCS enhanced performance on the training or transfer tasks. The results of Study 1 and Study 2 provide no evidence that tES enhances the benefits of working memory training. The absence of transfer between backward recall training and n-back in Study 2 suggested the tasks might tap into distinct aspects of working memory. Consequently, the final study used a latent variable approach to explore the degree of overlap between different forms of backward recall and n-back tasks containing digits, letters, or spatial locations as stimuli. The best-fitting factor model included two distinct but related (r = .68) constructs corresponding to backward recall and n-back. Both categories of task were linked to a separate fluid reasoning construct, providing evidence that both are valid measures of higher-order complex cognition. Overall, the experiments in this thesis suggest that working memory tasks tap into separate processes and that training may be targeting and improving these distinct processes, explaining the absence of cross-paradigm transfer.
3

Low Intensity Transcranial Electrical Stimulation: Effects on Categorization and Methodological Aspects / Transkranielle Stromstimulation mit geringen Intensitäten: Die Effekte auf Kategorisierungsleistung und methodische Aspekte

Ambrus, Géza Gergely 21 May 2012 (has links)
No description available.
4

Influences of visuospatial mental processes and cortical excitability on numerical cognition and learning

Thompson, Jacqueline Marie January 2014 (has links)
Numerical cognition has been shown to share many aspects of spatial cognition, both behavioural and neurological. However, it is unclear whether a particular type of spatial cognition, visuospatial mental imagery (VSMI), may play a role in symbolic numerical representation. In this thesis, I first show that mental rotation, a form of VSMI, is related to two measures of basic numerical representation. I then show that number-space synaesthesia (NSS), a rare type of VSMI involving visualised spatial layouts for numbers, does not show an advantage in mental rotation, but shows interference in number line mapping. I next present a study investigating links between NSS and the ability to learn novel numerical symbols. I demonstrate that NSS shows an advantage at learning novel numerals, and that transcranial random noise stimulation, which increases cortical excitability, confers broadly similar advantages that nonetheless differ in subtle ways. I present a study of transcranial alternating current stimulation on the same symbol learning paradigm, which fails to demonstrate effects. Lastly, I present data showing that strength of numerical representation in these newly-learnt symbols is correlated with a measure of mental rotation, and also with visual recognition ability for the symbols after, but not before, training. All together, these findings suggest that VSMI does indeed play a role in numerical cognition, and that it may do so from an early stage of learning symbolic numbers.

Page generated in 0.1902 seconds