21 |
Functional transcription regulatory network reconstruction and characterizationHu, Zhanzhi, January 1900 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2005. / Vita. Includes bibliographical references.
|
22 |
Investigating the transcriptional mechanisms controlling Sfpi1, a critical regulatory node within multiple lineage specifying subcircuits of the hematopoietic gene regulatory networkZarnegar, Mark Andrew. Rothenberg, Ellen V. Sternberg, Paul W. January 1900 (has links)
Thesis (Ph. D.) -- California Institute of Technology, 2010. / Title from home page (viewed 06/21/2010). Advisor and committee chair names found in the thesis' metadata record in the digital repository. Includes bibliographical references.
|
23 |
Intrinsic Disorder in Transcription FactorsLiu, Jiangang (Al) 08 1900 (has links)
Submitted to the faculty of the Indiana University School of Informatics Graduate School in partial fulfillment of the requirements for the degree Master of Sciences in Bioinformatics, August 2005 / Reported evidence suggested that high abundance of intrinsic disorder in eukaryotic genomes in comparison to bacteria and archaea may reflect the greater need for disorder-associated signaling and transcriptional regulation in nucleated cells. The major advantage of intrinsically disordered proteins or disordered regions is their inherent plasticity for molecular recognition, and this advantage promotes disordered proteins or disordered regions in binding their targets with high specificity and low affinity and with numerous partners. Although several well-characterized examples of intrinsically disordered proteins in transcriptional regulation have been reported and the biological functions associated with their corresponding structural properties have been examined, so far no specific systematic analysis of intrinsically disordered proteins has been reported. To test for a generalized prevalence of intrinsic disorder in transcriptional regulation, we first used the Predictor Of Natural Disorder Regions (PONDR VL-XT) to systematically analyze the intrinsic disorder in three Transcription Factor (TF) datasets (TFSPTRENR25, TFSPNR25, TFNR25) and two control sets (PDBs25 and RandomACNR25). PONDR VL-XT predicts regions of ≥30 consecutive disordered residues for 94.13%, 85.19%, 82.63%, 54.51%, and 18.64% of the proteins from TFNR25, TFSPNR25, TFSPTRENR25, RandomACNR25, and PDBs25, respectively, indicating significant abundance of intrinsic disorder in TFs as compared to the two control sets. We then used Cumulative Distribution Function (CDF) and charge-hydropathy plots to further confirm this propensity for intrinsic disorder in TFs. The amino acid compositions results showed that the three TF datasets differed significantly
5
from the two control sets. All three TF datasets were substantially depleted in order-promoting residues such as W, F, I, Y, and V, and significantly enriched in disorder-promoting residues such as Q, S, and P. H and C were highly over-represented in TF datasets because nearly a half of TFs contain several zinc-fingers and the most popular type of zinc-finger is C2H2. High occurrence of proline and glutamine in these TF datasets suggests that these residues might contribute to conformational flexibility needed during the process of binding by co-activators or repressors during transcriptional activation or repression. The data for disorder predictions on TF domains showed that the AT-hooks and basic regions of DNA Binding Domains (DBDs) were highly disordered (the overall disorder scores are 99% and 96% respectively). The C2H2 zinc-fingers were predicted to be highly ordered; however, the longer the zinc finger linkers, the higher the predicted magnitude of disorder. Overall, the degree of disorder in TF activation regions was much higher than that in DBDs. Our studies also confirmed that the degree of disorder was significantly higher in eukaryotic TFs than in prokaryotic TFs, and the results reflected the fact that the eukaryotes have well-developed elaborated gene transcription mechanism, and such a system is in great need of TF flexibility. Taken together, our data suggests that intrinsically disordered TFs or partially unstructured regions in TFs play key roles in transcriptional regulation, where folding coupled to binding is a common mechanism.
|
24 |
Transcriptional regulation of the human secretin receptor gene /Pang, Ting-kai, Ronald. January 2002 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2002. / Includes bibliographical references (leaves 110-140).
|
25 |
Investigating the mechanisms of growth factor independence-1 (Gfi-1)-mediated transcriptional repression of p21Cip1 and MBPQingquan, Liu. January 2009 (has links)
Dissertation (Ph.D.)--University of Toledo, 2009. / Typescript. "Submitted as partial fulfillment of the requirements for The Doctor of Philosophy in Biology." "A dissertation entitled"--at head of title. Title from title page of PDF document. Bibliography: p. 84-97.
|
26 |
Modualtion [sic] of transcription by sequences contained in the 5’-flanking region of a Drosophila melanogaster tRNAVal4 geneSajjadi, Fereydoun G. January 1985 (has links)
Transfer RNA genes require "positive" 5'-flanking sequences to direct efficient transcription. In order to delimit the modulatory sequences present in the 5'-flank of a Drosophila tRNA Val₄ gene, an extensive series of deletion mutants was constructed and end-points determined by dideoxy sequencing. The mutants were transcribed in vitro in a Drosophila Schneider II cell-free extract.
Twenty nucleotides of the 5'-flank immediately adjacent to the mature tRNA coding sequence were required for transcription.
Negative modulatory sequences were contained between positions -20 to -30 and -45 to -70 relative to the mature coding sequence. The -45 to -70 sequence shares homology with inhibitory sequences previously described in the 5'-flank of tRNA genes, except that this sequence was significantly larger in length. Sequences contained between
positions -38 and -45 act as positive modulatory sequences which enhance the level of transcription. In addition, a Transcription Modulation Element (TME) was identified between nucleotides -33 and -38. The TME was also found in the 5'-flanking sequences of various other tRNA genes and preliminary data suggests that it enhances transcription efficiency through its position relative to the D and T control regions / Medicine, Faculty of / Medical Genetics, Department of / Graduate
|
27 |
Isolation and characterization of Scarecrow suppressor mutants in Arabidopsis thalianaMekala, Vijaya Krishna. Wysocka-Diller, Joanna, January 2008 (has links) (PDF)
Thesis (M.S.)--Auburn University, 2008. / Abstract. Includes bibliographical references (p. 39-42).
|
28 |
Transcriptional regulation of the human secretin receptor genePang, Ting-kai, Ronald., 彭鼎佳 January 2002 (has links)
published_or_final_version / Zoology / Doctoral / Doctor of Philosophy
|
29 |
Tissue-specific transcriptional regulation of Sox2Lee, Yiu-fai, Angus, 李耀輝 January 2007 (has links)
published_or_final_version / abstract / Biochemistry / Doctoral / Doctor of Philosophy
|
30 |
Study on activation of Oct4 using engineered TALE and Cas9 transcription factors: 人工TALE和Cas9轉錄因子在激活Oct4基因中的研究 / 人工TALE和Cas9轉錄因子在激活Oct4基因中的研究 / CUHK electronic theses & dissertations collection / Study on activation of Oct4 using engineered TALE and Cas9 transcription factors: ren gong TALE he Cas9 zhuan lu yin zi zai ji huo Oct4 ji yin zhong de yan jiu / Ren gong TALE he Cas9 zhuan lu yin zi zai ji huo Oct4 ji yin zhong de yan jiuJanuary 2014 (has links)
Regulation of gene expression in a spatiotemporal manner specifies cellular identity. Transcription factors (TFs) bind to DNA regulatory elements to remodel chromosome structure, to recruit transcription machinery to initiate gene transcription or to prevent the assembly of such machinery to repress gene transcription, thus they lie at the heart of gene regulation. Given important roles of TFs in gene regulation, numerous attentions have been attracted for engineered transcription factors (eTFs). The recent advance of generating customized DNA-sequence specific binding domains, including transcription activator-like effectors (TALEs) and RNA-guided clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) gene Cas9, has greatly accelerated the study and application of eTFs. The eTFs with these new binding domains offer a powerful and precise approach for modulating gene expression. / Oct4 is an important TF and it plays essential roles in the formation of inner cell mass during embryogenesis, and the maintenance of embryonic stem cells in culture as well as the reinstatement of cellular pluripotency from somatic cells. / In this study, we systematically investigated the potential of TALE-TFs and CRISPR/Cas9-TFs in activating Oct4. We designed a number of TALEs and small guide RNAs (sgRNAs) targeting various regions in the mouse and human Oct4 promoters. Using luciferase assays, we found that the most efficient TALE-VP64s bound on the region −120 to −80 bp upstream of transcription start site (TSS), while highly effective sgRNAs targeted −147 to −89 bp upstream of TSS to induce high activity of luciferase reporters. This positional effect can serve as a simple guideline for designing eTFs for activating transcription from a reporter system. Next, we examined the potential of TALE-VP64 and sgRNAs to activate endogenous Oct4 transcription. We found that the positional effect was less obvious as individual eTFs exhibited marginal activity to up-regulate endogenous gene expression. Interestingly, we found that when multiple eTFs were applied simultaneously, Oct4 could be induced significantly and synergistically. This phenomenon was well supported by activation of human SOX2, KLF4, cMYC, CDH1 and NANOG by TALE-VP64s. / Using optimized combinations of TALE-VP64s, we successfully enhanced endogenous Oct4 transcription up to 30-fold in mouse NIH3T3 cells and 20-fold in human HEK293T cells. More importantly, the enhancement of OCT4 transcription ultimately generated OCT4 proteins. Furthermore, examination of different epigenetic modifiers showed that histone acetyltransferase p300 could enhance both TALE-VP64- and sgRNA/dCas9-VP64-induced transcription of endogenous OCT4. Taken together, this study demonstrated that engineered TALE-TFs and dCas9-TFs are useful tools for modulating gene expression in mammalian cells. / 基因表達調控是決定細胞命運的關鍵。轉錄因子可以結合到DNA調控序列上,以重塑染色體的結構;而且可以募集轉錄機器,以起始轉錄, 或者幹擾轉錄機器的組裝,從而抑制基因轉錄;因此,在基因表達調控過程中轉錄因子處於核心地位。由于轉錄因子在基因調控方面的重要作用,研究者們越來越多的關注人工轉錄因子的研究。DNA 序列特異性結合域的發現與發展很大程度上促進了人工轉錄因子的研究與應用。最近從TALE和CRISPR/Cas9衍生而來的人工轉錄因子給我們提供了一個強大而且精確的調控基因表達的方法。Oct4是一個重要的轉錄因子,對胚胎發育過程中內細胞團的形成,和體外培養的胚胎幹細胞的維持,以及細胞多能性的重塑等多方面都至關重要。 / 在本研究中,我們系統性地探討了TALE和CRISPR/Cas9衍生而來的人工轉錄因子在激活Oct4基因方面的潛能。我們針對小鼠和人的Oct4的啓動子設計了一序列的TALEs和sgRNAs。通過熒光素酶實驗,我們發現結合到轉錄起始位點上遊120‐80bp位置的TALE‐VP64s,或者結合到147‐89bp位置的sgRNAs可以最有效地誘導熒光素酶報告基因的表達。在激活報告基因方面,這種位置效應可以作爲一條設計人工轉錄因子的簡單原則。然後,我們進一步檢測了這些人工轉錄因子在激活內源性Oct4轉錄方面的效果。結果顯示上述觀察到的位置效應並不明顯,因爲每一單個的人工轉錄因子都幾乎不能上調內源性基因的表達。但是,當同時導入多個人工轉錄因子時,我們可以顯著地激活Oct4的表達,而且可以觀察到明顯的疊加效應。利用人工轉錄因子激活SOX2, KLF4, cMYC, CDH1和NANOG,我們進一步證明了這種疊加效應。 / 通過篩查不同的人工轉錄因子組合,我們在小鼠NIH3T3細胞系把Oct4基因的表達提供到了原來水平的30多倍,而在人的HEK293T中,提高了20多倍。更重要的是,我們可以檢測到蛋白質表達水平的提高。通過檢測不同的表觀調控因子,我們發現組蛋白乙酰化轉移酶p300可以進一步提升這些人工轉錄因子誘導的Oct4基因表達。因此,本研究表明這些人工轉錄因子是調節哺乳動物細胞內基因表達的有效工具。 / Hu, Jiabiao. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2014.y066 / Includes bibliographical references (leaves 132-157). / Abstracts also in Chinese. / Title from PDF title page (viewed on 13, December, 2016). / Hu, Jiabiao. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only.
|
Page generated in 0.1183 seconds