1 |
Capteurs passifs à transduction électromagnétique pour la mesure sans fil de la pression / Passive Micro-Sensors Based on Electromagnetic Transduction Principle for Remote pressure sensingJatlaoui, Mohamed Mehdi 20 April 2009 (has links)
Depuis quelques années on assiste à la prolifération de capteurs (pression, accélération, température) autonomes sans fil qui s'appuient sur la disponibilité d'une part d'éléments sensibles petits et performants et d'autre part sur de nouveaux circuits électroniques de communication à faible coût entre 300MHz et 3GHz. Ces composants répondent à la demande croissante pour des réseaux de capteurs communicants autonomes pour des applications distribuées de surveillance, d'analyse ou encore de diagnostic. Cependant, le développement de ces réseaux de capteurs communicants sans fil a mis en évidence une limitation intrinsèque de l'utilisation de la plupart des cellules de mesures existantes liée à l'autonomie énergétique du système. La majorité des recherches visant à augmenter l'autonomie des capteurs se focalisent d'une part sur la réduction de la consommation des cellules sensibles et des circuits électroniques et d'autre part sur la disponibilité de l'énergie embarquée. Bien que séduisantes, toutes ces solutions potentielles présentent des inconvénients majeurs tels que la complexité des dispositifs à mettre en œuvre, des faibles courants disponibles ou encore une quantité d'énergie stockée peu importante. Dans le cadre de cette thèse, on s'est intéressé au cas particulier des capteurs de pression et on a adopté une toute autre approche. En effet, l'objectif de ce travail consiste à repenser complètement le principe de fonctionnement du capteur en développant un nouveau mode de transduction complètement passif qui ne nécessite pas d'énergie embarquée et qui peut être interrogé à grande distance (plusieurs mètres à quelques dizaines de mètres) par radar. Ce mode baptisé `transduction électromagnétique' est basé sur la modification de la fréquence de résonance d'une fonction hyperfréquence par la grandeur à mesurer. Cette méthode originale de transduction convertit l'effet d'un gradient de pression en un décalage en fréquence. Dans une première étape, une validation théorique, par modélisation électromagnétique, du principe de fonctionnement est présentée. Ensuite, le dimensionnement de la cellule de mesure est réalisé en tenant compte, d'une part de l'aspect électromagnétique lié au circuit résonant, et d'autre part de l'aspect mécanique relatif aux contraintes technologiques pour les structures avec membrane silicium. Par la suite, des simulations électromagnétiques simplifiées ainsi que des simulations tenant compte de la déformation réelle de la membrane ont été réalisées pour valider, par simulation, le décalage en fréquence et ainsi valider le principe de fonctionnement du capteur. L'étape suivante a permis d'identifier les procédés technologiques en salle blanche qui ont permis de réaliser les premiers prototypes du capteur. Une fois les cellules de mesures fabriquées, des mesures RF ont été réalisées et viennent confirmer les résultats de simulations. Ensuite, en utilisant un banc de mesure spécialement dédié à ce type de capteurs, des mesures RF combinées avec des mesures en pression ont été menées pour la caractérisation en pression des prototypes et pour en extraire la sensibilité. Enfin, des perspectives sont ouvertes sur les aspects sans-fil et interrogation Radar du capteur / Manquant
|
2 |
Capteurs sans fils passifs à transduction électromagnétique : A la frontière entre le monde des capteurs et les MEMS RFPons, Patrick 16 March 2012 (has links) (PDF)
Mes recherches se placent dans ce cadre général du développement de nouveaux microsystèmes pour différentes applications. Le cheminement scientifique général que j'essaye d'appliquer à l'ensemble de mes activités peut être décrit par quatre phases dont la durée varie en fonction des thèmes, des moyens mis en œuvre et de l'environnement : Validation de nouveaux concepts, Optimisation des dispositifs en rapport avec un cahier des charges, Etude de fiabilité, Transfert industriel. Les trois premières phases mettent en œuvre des cycles de travaux que l'on peut classer en trois catégories : Conception/Simulation, Fabrication, Caractérisation/Modélisation. Pour chaque phase, un nombre plus ou moins important de cycles est alors nécessaire afin d'arriver à une modélisation acceptable du dispositif qui correspond à une compréhension correcte de son fonctionnement. C'est cette démarche qui m'a amené progressivement à travailler sur trois thématiques scientifiques : les capteurs de pression qui sont dans la phase de transfert industriel, les MEMS RF qui se trouvent dans la phase d'étude de fiabilité et les capteurs sans fil passifs à transduction électromagnétique qui restent encore en grande partie dans la phase de validation des concepts. Mes recherches se placent dans ce cadre général du développement de nouveaux microsystèmes pour différentes applications. Le cheminement scientifique général que j'essaye d'appliquer à l'ensemble de mes activités peut être décrit par quatre phases dont la durée varie en fonction des thèmes, des moyens mis en œuvre et de l'environnement : Validation de nouveaux concepts, Optimisation des dispositifs en rapport avec un cahier des charges, Etude de fiabilité, Transfert industriel. Les trois premières phases mettent en œuvre des cycles de travaux que l'on peut classer en trois catégories : Conception/Simulation, Fabrication, Caractérisation/Modélisation. Pour chaque phase, un nombre plus ou moins important de cycles est alors nécessaire afin d'arriver à une modélisation acceptable du dispositif qui correspond à une compréhension correcte de son fonctionnement. C'est cette démarche qui m'a amené progressivement à travailler sur trois thématiques scientifiques : les capteurs de pression qui sont dans la phase de transfert industriel, les MEMS RF qui se trouvent dans la phase d'étude de fiabilité et les capteurs sans fil passifs à transduction électromagnétique qui restent encore en grande partie dans la phase de validation des concepts.
|
3 |
Capteurs passifs à transduction électromagnétique pour la mesure sans fil de la pressionJatlaoui, Mohamed Mehdi 20 April 2009 (has links) (PDF)
Depuis quelques années on assiste à la prolifération de capteurs (pression, accélération, température) autonomes sans fil qui s'appuient sur la disponibilité d'une part d'éléments sensibles petits et performants et d'autre part sur de nouveaux circuits électroniques de communication à faible coût entre 300MHz et 3GHz. Ces composants répondent à la demande croissante pour des réseaux de capteurs communicants autonomes pour des applications distribuées de surveillance, d'analyse ou encore de diagnostic. Cependant, le développement de ces réseaux de capteurs communicants sans fil a mis en évidence une limitation intrinsèque de l'utilisation de la plupart des cellules de mesures existantes liée à l'autonomie énergétique du système. La majorité des recherches visant à augmenter l'autonomie des capteurs se focalisent d'une part sur la réduction de la consommation des cellules sensibles et des circuits électroniques et d'autre part sur la disponibilité de l'énergie embarquée. Bien que séduisantes, toutes ces solutions potentielles présentent des inconvénients majeurs tels que la complexité des dispositifs à mettre en Suvre, des faibles courants disponibles ou encore une quantité d'énergie stockée peu importante. Dans le cadre de cette thèse, on s'est intéressé au cas particulier des capteurs de pression et on a adopté une toute autre approche. En effet, l'objectif de ce travail consiste à repenser complètement le principe de fonctionnement du capteur en développant un nouveau mode de transduction complètement passif qui ne nécessite pas d'énergie embarquée et qui peut être interrogé à grande distance (plusieurs mètres à quelques dizaines de mètres) par radar. Ce mode baptisé 'transduction électromagnétique' est basé sur la modification de la fréquence de résonance d'une fonction hyperfréquence par la grandeur à mesurer. Cette méthode originale de transduction convertit l'effet d'un gradient de pression en un décalage en fréquence. Dans une première étape, une vali dation théorique, par modélisation électromagnétique, du principe de fonctionnement est présentée. Ensuite, le dimensionnement de la cellule de mesure est réalisé en tenant compte, d'une part de l'aspect électromagnétique lié au circuit résonant, et d'autre part de l'aspect mécanique relatif aux contraintes technologiques pour les structures avec membrane silicium. Par la suite, des simulations électromagnétiques simplifiées ainsi que des simulations tenant compte de la déformation réelle de la membrane ont été réalisées pour valider, par simulation, le décalage en fréquence et ainsi valider le principe de fonctionnement du capteur. L'étape suivante a permis d'identifier les procédés technologiques en salle blanche qui ont permis de réaliser les premiers prototypes du capteur. Une fois les cellules de mesures fabriquées, des mesures RF ont été réalisées et viennent confirmer les résultats de simulations. Ensuite, en utilisant un banc de mesure spécialement dédié à ce type de capteurs, des mesures RF combinées avec des mesures en pression ont été menées pour la caractérisation en pression des prototypes et pour en extraire la sensibilité. Enfin, des perspectives sont ouvertes sur les aspects sans-fil et interrogation Radar du capteur.
|
4 |
Capteurs de température passifs sans fil micro-fluidique à interrogation radarBouaziz, Sofiene 05 February 2013 (has links) (PDF)
L'objectif de cette thèse était de développer un capteur de température passif sans fil à transduction électromagnétique utilisant un couplage électromagnétique - fluide. Le principe de ce type de capteur est basé sur la dilation thermique d'un fluide dans un micro-canal qui modifie les propriétés électromagnétiques d'un dispositif aux fréquences millimétriques. Deux types de capteurs de température qui utilisent la transduction électromagnétique et la micro-fluidique ont été étudiés. Le premier est constitué d'une capacité planaire variable à l'aide d'un fluide diélectrique (eau distillée). La capacité est constituée par des électrodes en cuivre déposées sur un substrat en verre. La variation d'impédance, obtenue lors de la progression du front d'eau dans le micro-canal, permet de modifier l'impédance de charge d'une antenne et module ainsi le niveau de l'écho RADAR. Le second capteur utilise un fluide conducteur (Galinstan) qui court-circuite les deux brins d'une antenne dipôle lorsque le liquide se dilate. La structure utilisée est constituée d'un réseau d'antenne dont les deux brins sont court-circuités progressivement pour des températures différentes. On obtient ainsi une modulation de l'écho RADAR.
|
5 |
Développement d’une plateforme de détection de gaz, utilisant un capteur différentiel flexible imprimé à transducteurs micro-ondes et matériaux composites carbonés / Development of gas detection platform, using a printed flexible differential sensor with microwave transducers and carbon composite materialsBahoumina, Prince 09 July 2018 (has links)
Depuis la révolution industrielle les niveaux des concentrations atmosphériques des gaz à effet de serre ne cessent d’augmenter provocant ainsi une accélération du réchauffement climatique. Les composés organiques volatils (COVs) contribuent non seulement à cet effet de serre mais aussi à la pollution environnementale qui a un impact négatif sur toutes les espèces vivantes de la planète. Par exemple, au cours de l’année 2012, la pollution de l'air a été à l’origine 7 millions de décès, selon l'Organisation mondiale de la santé (OMS) [1]. Très récemment, une étude médicale de la commission Lancet sur la pollution et la santé a révélé qu'en 2015 un décès sur six était lié à la pollution de l'air et de l'eau, 6,5 millions de décès dans le monde chaque année sont liés à la pollution de l'air intérieur et extérieur [2]. En effet, les COVs, très volatils et utilisés comme solvants par exemple, peuvent être indirectement à l’origine de toux, d’inconfort thoracique, de gêne douloureuse, d’essoufflement respiratoire, d’irritation nasale ou oculaire ou encore de la gorge. Ils peuvent aussi être directement toxiques ou explosifs ou encore perturbateurs de la réponse immunitaire. De plus certains d’entre eux sont classés CMR (cancérogène, mutagène et reprotoxique). Dans ces conditions une meilleure connaissance des effets liés à l’exposition aux COVs sur la santé et l’environnement est vraiment nécessaire. Cette connaissance passe également par la détection et la quantification des concentrations de COVs afin de proposer un meilleur aménagement des environnements et d'alerter les individus concernés en temps réel sur les dangers encourus. La plupart des plateformes déjà existantes ou commercialisées sont soient trop coûteuses, soient très consommatrices d'énergie, soient fonctionnelles à des températures élevées, soient instables pour la détection en temps réel ou à long terme ce qui limite la prolifération des sites de mesures. Ainsi, cette thèse s’inscrit dans le domaine des capteurs de gaz dédiés pour la détection de la pollution dans l’air. Elle porte sur le développement d’une plateforme de détection, de suivi et de quantification des composés organiques volatils (COVs) en temps réel, utilisant un capteur de gaz différentiel flexible et imprimé basé sur des transducteurs micro-ondes et des matériaux carbonés polymères composites comme couches sensibles. Le dispositif proposé vise à fournir des informations directement exploitables pour constituer à terme une plateforme de faible coût embarquée, dédiée à l’internet des objets pour faciliter la prolifération des sites de détection et de contrôle en réalisant des réseaux de capteurs communicants sans fil fonctionnant en environnements variés. / Since the Industrial Revolution, the levels of atmospheric concentrations of greenhouse gases have been increasing, causing an acceleration of global warming. Volatile organic compounds (VOCs) contribute not only to this greenhouse effect, but also to environmental pollution, which has a negative impact on all living species on the planet. For example, in the year 2012, air pollution caused 7 million deaths, according to the World Health Organization (WHO) [1]. In addition, a very recent medical study by the Lancet Commission on Pollution and Health found that one in six deaths in 2015 was related to air and water pollution [2]. Also, indoor and outdoor air pollution is linked to 6.5 million deaths worldwide each year. VOCs can indirectly cause cough, chest discomfort, painful discomfort, shortness of breath, as well as nasal, ocular or throat irritation. They can also be directly toxic or explosive or disruptive of the immune response. In addition, some of them are classified as CMR (carcinogenic, mutagenic and reprotoxic). They are very volatile and often used as solvents for example. In these conditions, a better understanding of the health and environmental effects of exposure to VOCs is necessary. Such knowledge also involves the detection and quantification of VOC concentrations in order to propose a better management of the environments and to alert people in real time of the dangers incurred. Most of the existing or commercially available platforms are either too expensive, energy intensive, high temperature functional, unstable for real-time or long-term detection, which limits the proliferation of measurement sites. This thesis is in the field of dedicated gas sensors for the detection of pollution in the air. It deals with the development of a platform for the detection, monitoring and quantification of volatile organic compounds (VOCs) in real time, using a flexible and printed differential gas sensor based on microwave transducers and composite polymeric carbon materials as sensitive layers. The proposed device aims at providing directly exploitable information such as a low-cost embedded platform dedicated to the Internet of things and which offers increasing possibilities for the proliferation of detection and control sites by realizing networks of wireless communicating sensors operating in various environments.
|
Page generated in 0.4505 seconds