1 |
Der Einfluss der Wachstumsfaktoren TGF-b3 und EGF sowie des Matrixmoleküls Biglycan auf die Gene SOX9 und RUNX2 in chondrogenen Progenitorzellen / The influence of the growth factors tgf-b3 and egf and the matrix molecule biglycan on the genes sox9 and runx2 in chondrogenic progenitor cellsSchimmel, Stefan 22 September 2016 (has links)
Osteoarthritis (OA) ist eine chronische Erkrankung der Gelenke des menschlichen Körpers, insbesondere des Kniegelenkes. Sie ist durch entzündliche und degenerative Prozesse gekennzeichnet, die Patienten in ihrer Beweglichkeit stark einschränkt. In der komplexen Pathophysiologie kommt es unter anderem zu zellmorphologischen Veränderungen der knorpelbildenden Zellen, den Chondrozyten, und zu destruktiven Veränderungen der Knorpelmatrix. Bisherige therapeutische Ansätze bestehen in meist in einer rein symptomatischen Therapie durch Schmerzmittel sowie der operativen endoprothetischen Versorgung als Ultima Ratio. Eine kurative Therapie ist bisher nicht möglich. Einen Ansatz für eine kurative Therapie könnte eine Subpopulation der Zellen des Knorpelgewebes bieten. Chondrogene Progenitor Zellen (CPCs) stellen als Vorläuferzellen der Chondrozyten, gesteuert durch das prochondrogene Gen SOX9 und das proosteogene Gen RUNX2, einen möglichen regenerativen Ansatz in der Behandlung dar. Eine Rolle in diesem Prozess könnten die Wachstumsfaktoren TGF- β3 und EGF sowie das Matrixmolekül Biglycan darstellen. In dieser Arbeit konnte gezeigt werden, dass diese Wachstumsfaktoren, deren Rezeptoren und das Matrixmolekül Biglycan im osteoarthrischen Knorpel eine Rolle spielen. Insbesondere konnte in vitro gezeigt werden, dass CPCs unter dem Einfluss dieser Moleküle zu einer vermehrten SOX9 und verminderten RUNX2-Expression angeregt werden. Unter der Hypothese, dass sich CPCs auf diese Art zu Chondrozyten differenzieren lassen und so den Knorpel wiederherstellen, könnten diese Moleküle einen möglichen Baustein einer zukünftigen Therapie der OA darstellen.
|
2 |
Transforming Growth Factor Beta 3-Loaded Decellularized Equine Tendon Matrix for Orthopedic Tissue EngineeringRoth, Susanne Pauline, Brehm, Walter, Groß, Claudia, Scheibe, Patrick, Schubert, Susanna, Burk, Janina 09 February 2024 (has links)
Transforming growth factor beta 3 (TGF3) promotes tenogenic differentiation and
may enhance tendon regeneration in vivo. This study aimed to apply TGF3 absorbed in
decellularized equine superficial digital flexor tendon scaffolds, and to investigate the bioactivity
of scaffold-associated TGF3 in an in vitro model. TGF3 could effectively be loaded onto tendon
scaffolds so that at least 88% of the applied TGF3 were not detected in the rinsing fluid of the
TGF3-loaded scaffolds. Equine adipose tissue-derived multipotent mesenchymal stromal cells
(MSC) were then seeded on scaffolds loaded with 300 ng TGF3 to assess its bioactivity. Both
scaffold-associated TGF3 and TGF3 dissolved in the cell culture medium, the latter serving as
control group, promoted elongation of cell shapes and scaffold contraction (p < 0.05). Furthermore,
scaffold-associated and dissolved TGF3 affected MSC musculoskeletal gene expression in a similar
manner, with an upregulation of tenascin c and downregulation of other matrix molecules, most
markedly decorin (p < 0.05). These results demonstrate that the bioactivity of scaold-associated
TGF3 is preserved, thus TGF3 application via absorption in decellularized tendon scaffolds is a
feasible approach.
|
3 |
Scar-free wound healing and regeneration in the leopard gecko (Eublepharis macularius)Delorme, Stephanie 28 October 2011 (has links)
Scar-free wound healing and regeneration are uncommon phenomena permitting the near complete restoration of damaged tissues, organs and structures. Although rare in mammals, many lizards are able to undergo scarless healing and regeneration following loss of the tail. This study investigated the spontaneous and intrinsic capacity of the leopard gecko (Eublepharis macularius) tail to undergo scar-free wound healing and regeneration following two different forms of tail loss: autotomy, a voluntary and evolved mechanism of tail shedding at fracture planes; and surgical amputation, involuntary loss of the tail outside the fracture planes. Furthermore, I investigated the ability of the regenerate tail to regenerate by amputating a regenerate tail (previously lost by autotomy). To investigate these phenomena I imaged wound healing and regenereating tails daily (following autotomy and amputation) to document gross morphological changes. I used histochemistry to document tissue structure and immunohistochemistry to determine the tissue/cellular location of my five proteins of interest (PCNA, MMP-9, WE6, α-sma, TGF-β3). Each of these proteins of interest has been previously documented during wound healing and/or regeneration in other wound healing/regeneration model organisms (e.g. mice, urodeles, lizards, zebrafish). Scar-free wound healing and regeneration occurred following autotomy, amputation of the original tail and amputation of the regenerate tail, indicating that the leopard gecko tail has an instrinsic scar-free wound healing and regenerative capacity that is independent of the mode of tail loss (autotomy or amputation). Furthermore immunohistochemistry revealed a conserved sequence and location of the expression of the five proteins of interest following both forms of tail loss. These results provide the basis for further studies investigating scar-free wound healing and regeneration in a novel amniote model, the leopard gecko. / NSERC
|
Page generated in 0.1386 seconds