• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 601
  • 203
  • 59
  • 45
  • 26
  • 23
  • 16
  • 16
  • 12
  • 12
  • 12
  • 12
  • 12
  • 12
  • 11
  • Tagged with
  • 1169
  • 434
  • 224
  • 123
  • 122
  • 111
  • 104
  • 100
  • 98
  • 96
  • 95
  • 89
  • 81
  • 76
  • 75
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
351

On the Involvement of the Low-Density Lipoprotein Receptor in the Pathogenesis and Progression of Alzheimer’s Disease

Abisambra Socarras, Jose Francisco 30 December 2009 (has links)
Alzheimer's disease (AD) is the most prevalent form of age-associated dementia. Cholesterol dysregulation is linked with AD onset. Besides age, the most important risk factor associated with AD is the inheritance of the epsilon-4 allele of apolipoprotein E, a cholesterol transporter. In addition, while hypercholesterolemia has been shown to be an independent risk factor for AD, the nature of the cholesterol-AD link is still not clear. This gap in our understanding is partly due to a lack of knowledge about cholesterol metabolism in the central nervous system (CNS). The low-density lipoprotein receptor (LDLR) is the main receptor of apoE and a central regulator of serum cholesterol levels. Therefore, we sought to characterize the potential participation of LDLR in AD pathogenesis and/or progression. Previous reports with similar aims came to contradictory conclusions. Such studies assessed potential changes in AD in the absence of LDLR by utilizing the LDLR-/- mouse model and crossing it to AD mouse models. Initially we evaluated LDLR-/- mice as a suitable model to study AD. We found that LDLR-/- mice overexpressed a functional splice-variant of LDLR, LDLRDelta4. Moreover, its protein localized in similar regions as the LDLR did in control mice. Finally, we determined that LDLRDelta4 bound apoE, which underscores the impact of the isoform's function in the CNS. We then focused on characterizing changes to LDLR in AD models. We found that APP overexpression in cells increased LDLR mRNA and protein. APP overexpression and Abeta treatment shifted LDLR localization. An AD mouse model showed increased LDLR in hippocampus. Conversely, LDLR levels were decreased in APP-/- mice. Finally, we found that microtubules were affected in cells overexpressing APP. In conclusion, the data presented argue for the importance of LDLR-mediated regulation of cholesterol during AD progression. Also, LDLR may participate in the initial pathogenic insults leading to amyloid deposition, which make it a potential therapeutic target to treat AD. Finally, we propose that APP/Abeta overexpression disrupts microtubule formation; this alteration affects protein trafficking. One of the proteins affected is LDLR, the repercussions of which may ultimately result in cholesterol dysregulation.
352

Discovery and analysis of genes important in kidney development and disease

Milo Rasouly, Hila 03 November 2015 (has links)
Abnormal kidney development is a relatively prevalent health issue; however, the genetic basis is mostly unknown. The aim of this thesis is to identify genes important in kidney development and disease and to study their molecular functions. We hypothesized that human diseases associated with kidney anomalies can uncover novel genes important in kidney development and disease. The thesis is divided into three independent projects that examined three genes (i.e. Zeb2, Ilk, Robo2) at three stages of mouse kidney development: nephrogenesis, glomerular podocyte, and early ureteric bud outgrowth. In the first project, we identified Zeb2, a gene encoding the zinc finger E-box binding homeobox 2 transcription factor that is mutated in the Mowat Wilson syndrome, as a novel gene important in nephrogenesis. Zeb2 conditional knockout mice (Zeb2 cKO) develop glomerulocystic kidney disease with many atubular glomeruli and decreased expression of proximal tubular markers before cyst formation. These data suggest that abnormal nephrogenesis leads to the congenital atubular glomeruli and primary glomerular cysts in the Zeb2 cKO mice. This study implies that ZEB2 is a novel candidate gene for glomerular cystic disease in patients. Additionally we found that Pkd1, the gene mutated in autosomal dominant polycystic kidney disease, is upregulated in non-cystic glomeruli and knockout of one copy of the Pkd1 gene exacerbates the cystic phenotype of the Zeb2 cKO mice. These findings suggest a genetic interaction between Zeb2 and Pkd1 and that Zeb2 might be a novel PKD1 modifier. In the second project, we studied the roles of integrin-linked kinase (ILK) and roundabout 2 (ROBO2) in glomerular podocytes. We found that ILK and ROBO2 form a protein complex, and that loss of Robo2 improves survival and alleviates the podocyte and basement membrane abnormalities seen in Ilk knockout mice. In the third project, using microarray gene expression analysis, we found lower gene expression levels of extracellular matrix proteins during early ureteric bud outgrowth in the Robo2 homozygous knockout embryos as compared to wild type controls. These findings suggest that ROBO2 may regulate extracellular matrix components in the kidney. In conclusion, we found a new role for Zeb2 in nephrogenesis, and identified a novel function of Robo2 in regulating extracellular matrix gene expression in podocytes and during early kidney development. / 2017-11-03T00:00:00Z
353

Overexpression of Myeloid Differentiation Protein 88 in Mice Induces Mild Cardiac Dysfunction, but No Deficit in Heart Morphology

Chen, W., Huang, Z., Jiang, X., Li, C., Gao, X. 01 January 2016 (has links)
Cardiac remodeling involves changes in heart shape, size, structure, and function after injury to the myocardium. The proinflammatory adaptor protein myeloid differentiation protein 88 (MyD88) contributes to cardiac remodeling. To investigate whether excessive MyD88 levels initiate spontaneous cardiac remodeling at the whole-organism level, we generated a transgenic MyD88 mouse model with a cardiac-specific promoter. MyD88 mice (male, 20–30 g, n=~80) were born at the expected Mendelian ratio and demonstrated similar morphology of the heart and cardiomyocytes with that of wild-type controls. Although heart weight was unaffected, cardiac contractility of MyD88 hearts was mildly reduced, as shown by echocardiographic examination, compared with wild-type controls. Moreover, the cardiac dysfunction phenotype was associated with elevation of ANF and BNP expression. Collectively, our data provide novel evidence of the critical role of balanced MyD88 signaling in maintaining physiological function in the adult heart.
354

Over-Expression of the Cucumber Expansin Gene (Cs-EXPA1) in Transgenic Maize Seed for Cellulose Deconstruction

Yoon, Sangwoong, Devaiah, Shivakumar P., Choi, Seo eun, Bray, Jeff, Love, Robert, Lane, Jeffrey, Drees, Carol, Howard, John H., Hood, Elizabeth E. 01 April 2016 (has links)
Plant cell wall degradation into fermentable sugars by cellulases is one of the greatest barriers to biofuel production. Expansin protein loosens the plant cell wall by opening up the complex of cellulose microfibrils and polysaccharide matrix components thereby increasing its accessibility to cellulases. We over-expressed cucumber expansin in maize kernels to produce enough protein to assess its potential to serve as an industrial enzyme for applications particularly in biomass conversion. We used the globulin-1 embryo-preferred promoter to express the cucumber expansin gene in maize seed. Expansin protein was targeted to one of three sub-cellular locations: the cell wall, the vacuole, or the endoplasmic reticulum (ER). To assess the level of expansin accumulation in seeds of transgenic kernels, a high throughput expansin assay was developed. The highest expressing plants were chosen and enriched crude expansin extract from those plants was tested for synergistic effects with cellulase on several lignocellulosic substrates. Activity of recombinant cucumber expansin from transgenic kernels was confirmed on these pretreated substrates. The best transgenic lines (ER-targeted) can now be used for breeding to increase expansin expression for use in the biomass conversion industry. Results of these experiments show the success of expansin over-expression and accumulation in transgenic maize seed without negative impact on growth and development and confirm its synergistic effect with cellulase on deconstruction of complex cell wall substrates.
355

Attenuation of Doxorubicin-Induced Cardiac Injury by Mitochondrial Glutaredoxin 2

Diotte, Nicole M., Xiong, Ye, Gao, Jinping, Chua, Balvin H., Ho, Ye S. 01 February 2009 (has links)
While the cardiotoxicity of doxorubicin (DOX) is known to be partly mediated through the generation of reactive oxygen species (ROS), the biochemical mechanisms by which ROS damage cardiomyocytes remain to be determined. This study investigates whether S-glutathionylation of mitochondrial proteins plays a role in DOX-induced myocardial injury using a line of transgenic mice expressing the human mitochondrial glutaredoxin 2 (Glrx2), a thiotransferase catalyzing the reduction as well as formation of protein-glutathione mixed disulfides, in cardiomyocytes. The total glutaredoxin (Glrx) activity was increased by 76% and 53 fold in homogenates of whole heart and isolated heart mitochondria of Glrx2 transgenic mice, respectively, compared to those of nontransgenic mice. The expression of other antioxidant enzymes, with the exception of glutaredoxin 1, was unaltered. Overexpression of Glrx2 completely prevents DOX-induced decreases in NAD- and FAD-linked state 3 respiration and respiratory control ratio (RCR) in heart mitochondria at days 1 and 5 of treatment. The extent of DOX-induced decline in left ventricular function and release of creatine kinase into circulation at day 5 of treatment was also greatly attenuated in Glrx2 transgenic mice. Further studies revealed that heart mitochondria overexpressing Glrx2 released less cytochrome c than did controls in response to treatment with tBid or a peptide encompassing the BH3 domain of Bid. Development of tolerance to DOX toxicity in transgenic mice is also associated with an increase in protein S-glutathionylation in heart mitochondria. Taken together, these results imply that S-glutathionylation of heart mitochondrial proteins plays a role in preventing DOX-induced cardiac injury.
356

Gene editing in Aedes aegypti

Aryan, Azadeh 08 October 2013 (has links)
Aedes aegypti (Ae. aegypti) is one of the most important vectors of dengue, chikungunya and yellow fever viruses. The use of chemical control strategies such as insecticides is associated with problems including the development of insecticide resistance, side effects on animal and human health, and environmental concerns. Because current methods have not proven sufficient to control these diseases, developing novel, genetics-based, control strategies to limit the transmission of disease is urgently needed. Increased knowledge about mosquito-pathogen relationships and the molecular biology of mosquitoes now makes it possible to generate transgenic mosquito strains that are unable to transmit various parasites or viruses. Ae. aegypti genetic experiments are enabled, and limited by, the catalog of promoter elements available to drive transgene expression. To find a promoter able to drive robust expression of firefly (FF) luciferase in Ae. aegypti embryos, an experiment was designed to compare Ae. aegypti endogenous and exogenous promoters. The PUb promoter was found to be extremely robust in expression of FF luciferase in different stages of embryonic development from 2-72 hours after injection. In subsequent experiments, transformation frequency was calculated using four different promoters (IE1, UbL40, hsp82 and PUb) to express the Mos1 transposase open reading frame in Mos1-mediated transgenesis. Germline transformation efficiency and size of transgenic cluster were not significantly different when using endogenous Ae. aegypti PUb or the commonly used exogenous Drosophila hsp82 promoter to express Mos1 transposase. This study also describes the development of new tools for gene editing in the Ae. aegypti mosquito genome and the use of these tools to design an efficient gene drive system in this mosquito. Homing endonucleases (HEs) are selfish elements which catalyze double-stranded DNA (dsDNA) breaks in a sequence-specific manner. The activities of four HEs (Y2-I-AniI, I-CreI, I-PpoI, and I-SceI) were investigated for their ability to catalyze the excision of genomic segments from the Ae. aegypti genome. All four enzymes were found to be active in Ae. aegypti; however, the activity of Y2-I-AniI was higher compared to the other three enzymes. Single-strand annealing (SSA) and non-homologous end-joining (NHEJ) pathways were identified as mechanisms to repair HE-induced dsDNA breaks. TALE nucleases (TALENs) are a group of artificial enzymes capable of generating site-specific DNA lesions. To examine the ability of TALENs for gene editing in Ae. aegypti, a pair of TALENs targeted to the kmo gene were expressed from a plasmid following embryonic injection. Twenty to forty percent of fertile G0 produced white-eyed progeny which resulted from disruption of the kmo gene. Most of these individuals produced more than 20% white-eyed progeny, with some producing up to 75%. A small deletion of one to seven bp occurred at the TALEN recognition site. These results show that TALEN and HEs are highly active in the Ae. aegypti germline and can be used for gene editing and gene drive strategies in Ae. aegypti. / Ph. D.
357

The Behavioral Role of Mu Opioid Receptors in Glutamatergic Neurons

Reeves, Kaitlin C. 10 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Mu opioid receptors (MORs) mediate the analgesic and rewarding effects of opioids. Most research has focused on MORs in GABAergic neurons; however, MORs are also in glutamatergic neurons and their role in opioid-related behaviors was unclear. Our lab previously showed that MORs inhibit glutamate transmission from vesicular glutamate transporter 2 (vGluT2)-expressing thalamostriatal synapses. The behavioral relevance of MORs in vGluT2-expressing neurons was unknown; therefore, I utilized a conditional MOR knockout mouse with MORs deleted in vGluT2-expressing neurons (MORflox-vGluT2cre). MORflox-vGluT2cre mice have disrupted opioid reward, locomotor stimulation, and withdrawal, compared to cre-recombinase negative littermate controls. However, other MOR-mediated behaviors, including opioid-induced antinociception, alcohol reward, and palatable substance consumption are intact. MORs are expressed in vGluT2 neurons in several reward-related brain regions, including the thalamus and lateral habenula (LHb). To determine whether MORs in these brain regions modulate opioid-related behaviors, an adeno-associated viral (AAV) vector encoding cre-recombinase was stereotaxically injected into the thalamus or LHb of MORflox mice to specifically delete MORs in these brain regions. Opioid reward and locomotor stimulation remained intact in both thalamic and LHb MOR knockout mice; however, basal locomotor activity was increased in LHb MOR knockout mice. Sucrose consumption was also intact in LHb MOR knockout mice. Interestingly, in LHb MOR KO mice opioid withdrawal-induced paw shakes were increased, while withdrawal-induced jumping was completely ablated. Our lab previously showed that MORs inhibit glutamate transmission from the anterior insular cortex (AIC), which is disrupted by in vivo alcohol exposure. To determine the role of AIC MORs, AIC MORs were deleted with AAV vectors. AIC MOR knockout mice had intact opioid, sucrose, and alcohol reward, but had increased basal locomotor activity. MORs in glutamatergic neurons are critical mediators of opioid reward; however, the specific glutamatergic neurons mediating the rewarding effects of opioids remains to be determined.
358

Expression of human protein C in transgenic Nicotiana tabacum

Piché, Christian. January 1994 (has links)
No description available.
359

The effects of a human b-amyloid gene on learning and memory in transgenic mice /

Tirado Santiago, Giovanni January 1994 (has links)
No description available.
360

Exploration of high-density oligoarrays as tools to assess substantial equivalence of genetically modified crops

Beaulieu, Julie. January 2005 (has links)
No description available.

Page generated in 0.0434 seconds