• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Numerical Simulation of Transient Diabatic Pipe Flow by using the Method of Characteristics

Pasquini, Enrico, Baum, Heiko, van Bebber, David, Pendovski, Denis 28 April 2016 (has links) (PDF)
The following paper presents a one-dimensional numerical model for simulating transient thermohydraulic pipe flow based on the Method of Characteristics. In addition to mass and momentum conservation, the proposed scheme also guarantees compliance with the laws of thermodynamics by solving the energy equation. The model covers transient changes in fluid properties due to pressure changes, heat transfer and dissipation. The presented methodology also allows the computation of the transient temperature distribution in the pipe wall through an additional ordinary finite difference scheme. The numerical procedure is implemented in the commercial simulation software DSHplus. The capability of the code is examined by comparing the simulation results with theoretical solutions and experimental data.
2

Numerical Simulation of Transient Diabatic Pipe Flow by using the Method of Characteristics

Pasquini, Enrico, Baum, Heiko, van Bebber, David, Pendovski, Denis January 2016 (has links)
The following paper presents a one-dimensional numerical model for simulating transient thermohydraulic pipe flow based on the Method of Characteristics. In addition to mass and momentum conservation, the proposed scheme also guarantees compliance with the laws of thermodynamics by solving the energy equation. The model covers transient changes in fluid properties due to pressure changes, heat transfer and dissipation. The presented methodology also allows the computation of the transient temperature distribution in the pipe wall through an additional ordinary finite difference scheme. The numerical procedure is implemented in the commercial simulation software DSHplus. The capability of the code is examined by comparing the simulation results with theoretical solutions and experimental data.

Page generated in 0.0816 seconds