• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analysis of Fluid Circulation in a Spherical Cryogenic Storage Tank and Conjugate Heat Transfer in a Circular Microtube

Rao, P Sharath Chandra 08 July 2004 (has links)
The study considered development of a finite-element numerical simulation model for the analysis of fluid flow and conjugate heat transfer in a zero boil-off (ZBO) cryogenic storage system. A spherical tank was considered for the investigation. The tank wall is made of aluminum and a multi-layered blanket of cryogenic insulation (MLI) has been attached on the top of the aluminum. The tank is connected to a cryocooler to dissipate the heat leak through the insulation and tank wall into the fluid within the tank. The cryocooler has not been modeled; only the flow in and out of the tank to the cryocooler system has been included. The primary emphasis of this research has been the fluid circulation within the tank for different fluid distribution scenario and for different level of gravity to simulate all the potential earth and space based applications. The steady-state velocity, temperature, and pressure distributions were calculated for different inlet positions, inlet velocities, and for different gravity values. The simulations were carried out for constant heat flux and constant wall temperature cases. It was observed that a good flow circulation could be obtained when the cold entering fluid was made to flow in radial direction and the inlet opening was placed close to the tank wall. The transient and steady state heat transfer for laminar flow inside a circular microtube within a rectangular substrate during start up of power has also been investigated. Silicon, Silicon Carbide and Stainless Steel were the substrates used and Water and FC-72 were the coolants employed. Equations governing the conservation of mass, momentum, and energy were solved in the fluid region. Within the solid wafer, the heat conduction was solved. The Reynolds number, Prandtl number, thermal conductivity ratio, and diameter ranges were: 1000--1900, 6.78--12.68, 27--2658, and 300 µ m--1000 µ m respectively. It was found that a higher aspect ratio or larger diameter tube and higher thermal conductivity ratio combination of substrate and coolant requires lesser amount of time to attain steady state. It was seen that enlarging the tube from 300 µ m to 1000 µ m results in lowering of the fluid mean temperature at the exit. Nusselt number decreased with time and finally reached the steady state condition. It was also found that a higher Prandtl number fluid attains higher maximum substrate temperature and Nusselt number. A correlation for peripheral average Nusselt number was developed by curve-fitting the computed results with an average error of 6.5%. This correlation will be very useful for the design of circular microtube heat exchangers.
2

Design, Control, and Validation of a Transient Thermal Management System with Integrated Phase-Change Thermal Energy Storage

Michael Alexander Shanks (14216549) 06 December 2022 (has links)
<p>An emerging technology in the field of transient thermal management is thermal energy storage, or TES, which enables temporary, on-demand heat rejection via storage as latent heat in a phase-change material.  Latent TES devices have enabled advances in many thermal management applications, including peak load shifting for reducing energy demand and cost of HVAC systems and providing supplemental heat rejection in transient thermal management systems.  However, the design of a transient thermal management system with integrated storage comprises many challenges which are yet to be solved.  For example, design approaches and performance metrics for determining the optimal dimensions of the TES device have only recently been studied.  Another area of active research is estimation of the internal temperature state of the device, which can be difficult to directly measure given the transient nature of the thermal storage process.  Furthermore, in contrast to the three main functions of a thermal-fluid system--heat addition, thermal transport, and heat rejection--thermal storage introduces the need for active, real-time control and automated decision making for managing the operation of the thermal storage device. </p> <p>In this thesis, I present the design process for integrating thermal energy storage into a single-phase thermal management system for rejecting transient heat loads, including design of the TES device, state estimation and control algorithm design, and validation in both simulation and experimental environments. Leveraging a reduced-order finite volume simulation model of a plate-fin TES device, I develop a design approach which involves a transient simulation-based design optimization to determine the required geometric dimensions of the device to meet transient performance objectives while maximizing power density.  The optimized TES device is integrated into a single-phase thermal-fluid testbed for experimental testing.  Using the finite volume model and feedback from thermocouples embedded in the device, I design and experimentally validate a state estimator based on the state-dependent Riccati equation approach for determining the internal temperature distribution to a high degree of accuracy.  Real-time knowledge of the internal temperature state is critical for making control decisions; to manage the operation of the TES device in the context of a transient thermal management system, I design and test, both in simulation and experimentally, a logic-based control strategy that uses fluid temperature measurements and estimates of the TES state to make real-time control decisions to meet critical thermal management objectives. Together, these advances demonstrate the potential of thermal energy storage technology as a component of thermal management systems and the feasibility of logic-based control strategies for real-time control of thermal management objectives.</p>

Page generated in 0.1068 seconds