Spelling suggestions: "subject:"trecento""
1 |
Utilisation du contexte pour l'indexation sémantique des images et vidéos / Using context for semantic indexing of image and video documentsHamadi, Abdelkader 23 October 2014 (has links)
L'indexation automatisée des documents image fixe et vidéo est un problème difficile en raison de la ``distance'' existant entre les tableaux de nombres codant ces documents et les concepts avec lesquels on souhaite les annoter (personnes, lieux, événements ou objets, par exemple). Des méthodes existent pour cela mais leurs résultats sont loin d'être satisfaisants en termes de généralité et de précision. Elles utilisent en général un ensemble unique de tels exemples et le considère d'une manière uniforme. Ceci n'est pas optimal car un même concept peut apparaître dans des contextes très divers et son apparence peut être très différente en fonction de ces contextes. Dans le cadre de cette thèse, nous avons considéré l'utilisation du contexte pour l'indexation des documents multimédia. Le contexte a largement été utilisé dans l'état de l'art pour traiter diverses problématiques. Dans notre travail, nous retenons les relations entre les concepts comme source de contexte sémantique. Pour le cas des vidéos, nous exploitons le contexte temporel qui modélise les relations entre les plans d'une même vidéo. Nous proposons plusieurs approches utilisant les deux types de contexte ainsi que leur combinaison, dans différents niveaux d'un système d'indexation. Nous présentons également le problème de détection simultanée de groupes de concepts que nous jugeons lié à la problématique de l'utilisation du contexte. Nous considérons que la détection d'un groupe de concepts revient à détecter un ou plusieurs concepts formant le groupe dans un contexte ou les autres sont présents. Nous avons étudié et comparé pour cela deux catégories d'approches. Toutes nos propositions sont génériques et peuvent être appliquées à n'importe quel système pour la détection de n'importe quel concept. Nous avons évalué nos contributions sur les collections de données TRECVid et VOC, qui sont des standards internationaux et reconnues par la communauté. Nous avons obtenu de bons résultats, comparables à ceux des meilleurs systèmes d'indexation évalués ces dernières années dans les compagnes d'évaluation précédemment citées. / The automated indexing of image and video is a difficult problem because of the``distance'' between the arrays of numbers encoding these documents and the concepts (e.g. people, places, events or objects) with which we wish to annotate them. Methods exist for this but their results are far from satisfactory in terms of generality and accuracy. Existing methods typically use a single set of such examples and consider it as uniform. This is not optimal because the same concept may appear in various contexts and its appearance may be very different depending upon these contexts. In this thesis, we considered the use of context for indexing multimedia documents. The context has been widely used in the state of the art to treat various problems. In our work, we use relationships between concepts as a source of semantic context. For the case of videos, we exploit the temporal context that models relationships between the shots of the same video. We propose several approaches using both types of context and their combination, in different levels of an indexing system. We also present the problem of multiple concept detection. We assume that it is related to the context use problematic. We consider that detecting simultaneously a set of concepts is equivalent to detecting one or more concepts forming the group in a context where the others are present. To do that, we studied and compared two types of approaches. All our proposals are generic and can be applied to any system for the detection of any concept. We evaluated our contributions on TRECVID and VOC collections, which are of international standards and recognized by the community. We achieved good results comparable to those of the best indexing systems evaluated in recent years in the evaluation campaigns cited previously.
|
2 |
Vyhledávání informací / Information RetrievalŠabatka, Pavel January 2010 (has links)
The purpose of this thesis is a summary of theoretical knowledge in the field of information retrieval. This document contains mathematical models that can be used for information retrieval algorithms, including how to rank them. There are also examined the specifics of image and text data. The practical part is then an implementation of the algorithm in video shots of the TRECVid 2009 dataset based on high-level features. The uniqueness of this algorithm is to use internet search engines to obtain terms similarity. The work contains a detailed description of the implemented algorithm including the process of tuning and conclusions of its testing.
|
3 |
Získávání znalostí z multimediálních databází / Knowledge Discovery in Multimedia DatabasesMálik, Peter January 2011 (has links)
This master"s thesis deals with the knowledge discovery in multimedia databases. It contains general principles of knowledge discovery in databases, especially methods of cluster analysis used for data mining in large and multidimensional databases are described here. The next chapter contains introduction to multimedia databases, focusing on the extraction of low level features from images and video data. The practical part is then an implementation of the methods BIRCH, DBSCAN and k-means for cluster analysis. Final part is dedicated to experiments above TRECVid 2008 dataset and description of achievements.
|
4 |
Získávání znalostí z multimediálních databází / Knowledge Discovery in Multimedia DatabasesJurčák, Petr January 2009 (has links)
This master's thesis is dedicated to theme of knowledge discovery in Multimedia Databases, especially basic methods of classification and prediction used for data mining. The other part described about extraction of low level features from video data and images and summarizes information about content-based search in multimedia content and indexing this type of data. Final part is dedicated to implementation Gaussian mixtures model for classification and compare the final result with other method SVM.
|
5 |
Fusion multi-niveaux pour l'indexation et la recherche multimédia par le contenu sémantiqueBenmokhtar, Rachid 09 June 2009 (has links) (PDF)
Aujourd'hui, l'accès aux documents dans les bases de données, d'archives et sur Internet s'effectue principalement grâce à des données textuelles : nom de l'image ou mots-clés. Cette recherche est non exempte de fautes plus ou moins graves : omission, orthographe, etc. Les progrès effectués dans le domaine de l'analyse d'images et de l'apprentissage automatique permettent d'apporter des solutions comme l'indexation et la recherche à base des caractéristiques telles que la couleur, la forme, la texture, le mouvement, le son et le texte. Ces caractéristiques sont riches en informations et notamment d'un point de vue sémantique. Cette thèse s'inscrit dans le cadre de l'indexation automatique par le contenu sémantique des documents multimédia: plans vidéo et images-clés. L'indexation consiste à extraire, représenter et organiser efficacement le contenu des documents d'une base de données. L'état de l'art du domaine est confronté au «fossé sémantique» qui sépare les représentations visuelles brutes (bas-niveau) et conceptuelles (haut-niveau). Pour limiter les conséquences de cette problématique, nous avons introduit dans le système plusieurs types de descripteurs, tout en prenant à notre avantage les avancées scientifiques dans le domaine de l'apprentissage automatique et de la ``fusion multi-niveaux''. En effet, la fusion est utilisée dans le but de combiner des informations hétérogènes issues de plusieurs sources afin d'obtenir une information globale, plus complète, de meilleure qualité, permettant de mieux décider et d'agir. Elle peut être appliquée sur plusieurs niveaux du processus de classification. Dans cette thèse, nous avons étudié la fusion bas-niveau (précoce), la fusion haut-niveau (tardive), ainsi qu'à un niveau décisionnel basé sur l'ontologie et la similarité inter-concepts dit de raisonnement. Les systèmes proposés ont été validés sur les données de TRECVid (projet NoE K-Space) et les vidéos de football issues d'Orange-France Télécom Labs (projet CRE-Fusion). Les résultats révèlent l'importance de la fusion sur chaque niveau du processus de classification, en particulier, l'usage de la théorie des évidences.
|
6 |
Vyhledávání v multimodálních databázích / Multimodal Database SearchKrejčíř, Tomáš January 2009 (has links)
The field that deals with storing and effective searching of multimedia documents is called Information retrieval. This paper describes solution of effective searching in collections of shots. Multimedia documents are presented as vectors in high-dimensional space, because in such collection of documents it is easier to define semantics as well as the mechanisms of searching. The work aims at problems of similarity searching based on metric space, which uses distance functions, such as Euclidean, Chebyshev or Mahalanobis, for comparing global features and cosine or binary rating for comparing local features. Experiments on the TRECVid dataset compare implemented distance functions. Best distance function for global features appears to be Mahalanobis and for local features cosine rating.
|
7 |
Semantic content analysis for effective video segmentation, summarisation and retrieval.Ren, Jinchang January 2009 (has links)
This thesis focuses on four main research themes namely shot boundary detection, fast frame alignment, activity-driven video summarisation, and highlights based video annotation and retrieval. A number of novel algorithms have been proposed to address these issues, which can be highlighted as follows.
Firstly, accurate and robust shot boundary detection is achieved through modelling of cuts into sub-categories and appearance based modelling of several gradual transitions, along with some novel features extracted from compressed video. Secondly, fast and robust frame alignment is achieved via the proposed subspace phase correlation (SPC) and an improved sub-pixel strategy. The SPC is proved to be insensitive to zero-mean-noise, and its gradient-based extension is even robust to non-zero-mean noise and can be used to deal with non-overlapped regions for robust image registration. Thirdly, hierarchical modelling of rush videos using formal language techniques is proposed, which can guide the modelling and removal of several kinds of junk frames as well as adaptive clustering of retakes. With an extracted activity level measurement, shot and sub-shot are detected for content-adaptive video summarisation. Fourthly, highlights based video annotation and retrieval is achieved, in which statistical modelling of skin pixel colours, knowledge-based shot detection, and improved determination of camera motion patterns are employed.
Within these proposed techniques, one important principle is to integrate various kinds of feature evidence and to incorporate prior knowledge in modelling the given problems. High-level hierarchical representation is extracted from the original linear structure for effective management and content-based retrieval of video data. As most of the work is implemented in the compressed domain, one additional benefit is the achieved high efficiency, which will be useful for many online applications. / EU IST FP6 Project
|
8 |
Indexation et recherche de contenus par objet visuel / Object-based visual content indexing and retrievalBursuc, Andrei 21 December 2012 (has links)
La question de recherche des objets vidéo basés sur le contenu lui-même, est de plus en plus difficile et devient un élément obligatoire pour les moteurs de recherche vidéo. Cette thèse présente un cadre pour la recherche des objets vidéo définis par l'utilisateur et apporte deux grandes contributions. La première contribution, intitulée DOOR (Dynamic Object Oriented Retrieval), est un cadre méthodologique pour la recherche et récupération des instances d'objets vidéo sélectionnés par un utilisateur, tandis que la seconde contribution concerne le support offert pour la recherche des vidéos, à savoir la navigation dans les vidéo, le système de récupération de vidéos et l'interface avec son architecture sous-jacente.Dans le cadre DOOR, l’objet comporte une représentation hybride obtenues par une sur-segmentation des images, consolidé avec la construction des graphs d’adjacence et avec l’agrégation des points d'intérêt. L'identification des instances d'objets à travers plusieurs vidéos est formulée comme un problème d’optimisation de l'énergie qui peut approximer un tache NP-difficile. Les objets candidats sont des sous-graphes qui rendent une énergie optimale vers la requête définie par l'utilisateur. Quatre stratégies d'optimisation sont proposées: Greedy, Greedy relâché, recuit simulé et GraphCut. La représentation de l'objet est encore améliorée par l'agrégation des points d'intérêt dans la représentation hybride, où la mesure de similarité repose sur une technique spectrale intégrant plusieurs types des descripteurs. Le cadre DOOR est capable de s’adapter à des archives vidéo a grande échelle grâce à l'utilisation de représentation sac-de-mots, enrichi avec un algorithme de définition et d’expansion de la requête basée sur une approche multimodale, texte, image et vidéo. Les techniques proposées sont évaluées sur plusieurs corpora de test TRECVID et qui prouvent leur efficacité.La deuxième contribution, OVIDIUS (On-line VIDeo Indexing Universal System) est une plate-forme en ligne pour la navigation et récupération des vidéos, intégrant le cadre DOOR. Les contributions de cette plat-forme portent sur le support assuré aux utilisateurs pour la recherche vidéo - navigation et récupération des vidéos, interface graphique. La plate-forme OVIDIUS dispose des fonctionnalités de navigation hiérarchique qui exploite la norme MPEG-7 pour la description structurelle du contenu vidéo. L'avantage majeur de l'architecture propose c’est sa structure modulaire qui permet de déployer le système sur terminaux différents (fixes et mobiles), indépendamment des systèmes d'exploitation impliqués. Le choix des technologies employées pour chacun des modules composant de la plate-forme est argumentée par rapport aux d'autres options technologiques. / With the ever increasing amount of available video content on video repositories the issue of content-based video objects retrieval is growing in difficulty and becomes a mandatory feature for video search engines.The present thesis advances a user defined video object retrieval framework and brings two major contributions. The first contribution is a methodological framework for user selected video object instances retrieval, entitled DOOR (Dynamic Object Oriented Retrieval), while the second one concerns the support offered for video retrieval, namely the video navigation and retrieval system and interface and its underlying architecture.Under the DOOR framework, the user defined video object comports a hybrid representation obtained by over-segmenting the frames, constructing region adjacency graphs and aggregating interest points. The identification of object instances across multiple videos is formulated as an energy optimization problem approximating an NP-hard problem. Object candidates are sub-graphs that yield an optimum energy towards the user defined query. In order to obtain the optimum energy four optimization strategies are proposed: Greedy, Relaxed Greedy, Simulated Annealing and GraphCut. The region-based object representation is further improved by the aggregation of interest points into a hybrid object representation. The similarity between an object and a frame is achieved with the help of a spectral matching technique integrating both colorimetric and interest points descriptors.The DOOR framework is suitable to large scale video archives through the use of a Bag-of-Words representation enriched with a query definition and expansion mechanism based on a multi-modal, text-image-video principle.The performances of the proposed techniques are evaluated on multiple TRECVID video datasets prooving their effectiveness.The second contribution is related to the user support for video retrieval - video navigation, video retrieval, graphical interface - and consists in the OVIDIUS (On-line VIDeo Indexing Universal System) on-line video browsing and retrieval platform. The OVIDIUS platform features hierarchical video navigation functionalities that exploit the MPEG-7 approach for structural description of video content. The DOOR framework is integrated in the OVIDIUS platform, ensuring the search functionalities of the system. The major advantage of the proposed system concerns its modular architecture which makes it possible to deploy the system on various terminals (both fixed and mobile), independently of the exploitation systems involved. The choice of the technologies employed for each composing module of the platform is argumented in comparison with other technological options. Finally different scenarios and use cases for the OVIDIUS platform are presented.
|
9 |
Semantic content analysis for effective video segmentation, summarisation and retrievalRen, Jinchang January 2009 (has links)
This thesis focuses on four main research themes namely shot boundary detection, fast frame alignment, activity-driven video summarisation, and highlights based video annotation and retrieval. A number of novel algorithms have been proposed to address these issues, which can be highlighted as follows. Firstly, accurate and robust shot boundary detection is achieved through modelling of cuts into sub-categories and appearance based modelling of several gradual transitions, along with some novel features extracted from compressed video. Secondly, fast and robust frame alignment is achieved via the proposed subspace phase correlation (SPC) and an improved sub-pixel strategy. The SPC is proved to be insensitive to zero-mean-noise, and its gradient-based extension is even robust to non-zero-mean noise and can be used to deal with non-overlapped regions for robust image registration. Thirdly, hierarchical modelling of rush videos using formal language techniques is proposed, which can guide the modelling and removal of several kinds of junk frames as well as adaptive clustering of retakes. With an extracted activity level measurement, shot and sub-shot are detected for content-adaptive video summarisation. Fourthly, highlights based video annotation and retrieval is achieved, in which statistical modelling of skin pixel colours, knowledge-based shot detection, and improved determination of camera motion patterns are employed. Within these proposed techniques, one important principle is to integrate various kinds of feature evidence and to incorporate prior knowledge in modelling the given problems. High-level hierarchical representation is extracted from the original linear structure for effective management and content-based retrieval of video data. As most of the work is implemented in the compressed domain, one additional benefit is the achieved high efficiency, which will be useful for many online applications.
|
10 |
Získávání znalostí z obrazových databází / Knowledge Discovery in Image DatabasesJaroš, Ondřej January 2010 (has links)
This thesis is focused on knowledge discovery from databases, especially on methods of classification and prediction. These methods are described in detail. Furthermore, this work deals with multimedia databases and the way these databases store data. In particular, the method for processing low-level image and video data is described. The practical part of the thesis focuses on the implementation of this GMM method used for extracting low-level features of video data and images. In other parts, input data and tools, which the implemented method was compared with, are described. The last section focuses on experiments comparing extraction efficiency features of high-level attributes of low-level data and the methods implemented in selected classification tools LibSVM.
|
Page generated in 0.046 seconds