Spelling suggestions: "subject:"treibhausgasemissionen""
11 |
Biogenic greenhouse gas emissions from agriculture in Europe quantification and mitigation /Freibauer, Annette. January 2002 (has links)
Hohenheim, Univ., Diss., 2002.
|
12 |
Bilanzierung des Methanaustauschs zwischen Biosphäre und Atmosphäre in Periglazialräumen mit Hilfe von Fernerkundung und Modellen am Beispiel des Lena-DeltasKirschke, Stefanie. Unknown Date (has links) (PDF)
Würzburg, Universiẗat, Diss., 2008.
|
13 |
Bestimmung der Emissionen klimarelevanter und flüchtiger organischer Spurengase aus Öl- und Gasfeuerungen kleiner LeistungPfeiffer, Frank. January 2001 (has links) (PDF)
Universiẗat, Diss., 2001--Stuttgart.
|
14 |
Greenhouse gas emissions (methane and nitrous oxide) and water use in a water-saving ground cover rice production system (GCRPS) in North China, BeijingKreye, Christine. Unknown Date (has links) (PDF)
University, Diss., 2004--Kiel.
|
15 |
Weiterentwicklung der deutschen Treibhausgasminderungsquote: Hintergrundpapier, Februar 2021Naumann, Karin, Müller-Langer, Franziska, Meisel, Kathleen, Majer, Stefan, Schröder, Jörg, Schmieder, Uta 21 July 2022 (has links)
Die folgenden Abschnitte beschäftigen sich im Detail mit der Funktionsweise der THG-Quote und den möglichen Konsequenzen der diskutierten Vorschläge sowie deren Einordnung in Bezug auf die deutschen Klimaschutzziele.
|
16 |
Bilanzierung des Methanaustauschs zwischen Biosphäre und Atmosphäre in Periglazialräumen mit Hilfe von Fernerkundung und Modellen am Beispiel des Lena Deltas / Balancing Methane Exchange between Biosphere and Atmosphere in Periglacial Regions Using Remote Sensing and Modeling: A Case Study for the Lena River DeltaKirschke, Stefanie January 2008 (has links) (PDF)
Verbleibende Unsicherheiten im Kohlenstoffhaushalt in Ökosystemen der hohen nördlichen Breiten können teilweise auf die Schwierigkeiten bei der Erfassung der räumlich und zeitlich hoch variablen Methanemissionsraten von Permafrostböden zurückgeführt werden. Methan ist ein global abundantes atmosphärisches Spurengas, welches signifikant zur Erwärmung der Atmosphäre beiträgt. Aufgrund der hohen Sensibilität des arktischen Bodenkohlenstoffreservoirs sowie der großen von Permafrost unterlagerten Landflächen sind arktische Gebiete am kritischsten von einem globalen Klimawandel betroffen. Diese Dissertation adressiert den Bedarf an Modellierungsansätzen für die Bestimmung der Quellstärke nordsibirischer permafrostbeeinflusster Ökosysteme der nassen polygonalen Tundra mit Hinblick auf die Methanemissionen auf regionalem Maßstab. Die Arbeit präsentiert eine methodische Struktur in welcher zwei prozessbasierte Modelle herangezogen werden, um die komplexen Wechselwirkungen zwischen den Kompartimenten Pedosphäre, Biosphäre und Atmosphäre, welche zu Methanemissionen aus Permafrostböden führen, zu erfassen. Es wird ein Upscaling der Gesamtmethanflüsse auf ein größeres, von Permafrost unterlagertes Untersuchungsgebiet auf Basis eines prozessbasierten Modells durchgeführt. Das prozessbasierte Vegetationsmodell Biosphere Energy Hydrology Transfer Model (BETHY/DLR) wird für die Berechnung der Nettoprimärproduktion (NPP) arktischer Tundravegetation herangezogen. Die NPP ist ein Maß für die Substratverfügbarkeit der Methanproduktion und daher ein wichtiger Eingangsparameter für das zweite Modell: Das prozessbasierte Methanemissionsmodell wird anschließend verwendet, um die Methanflüsse einer gegebenen Bodensäule explizit zu berechnen. Dabei werden die Prozesse der Methanogenese, Methanotrophie sowie drei verschiedene Transportmechanismen – molekulare Diffusion, Gasblasenbildung und pflanzengebundener Transport durch vaskuläre Pflanzen – berücksichtigt. Das Methanemissionsmodell ist für Permafrostbedingungen modifiziert, indem das tägliche Auftauen des Permafrostbodens in der kurzen arktischen Vegetationsperiode berücksichtigt wird. Der Modellantrieb besteht aus meteorologischen Datensätzen des European Center for Medium-Range Weather Forecasts (ECMWF). Die Eingangsdatensätze werden mit Hilfe von in situ Messdaten validiert. Zusätzliche Eingangsdaten für beide Modelle werden aus Fernerkundungsdaten abgeleitet, welche mit Feldspektralmessungen validiert werden. Eine modifizierte Landklassifikation auf der Basis von Landsat-7 Enhanced Thematic Mapper Plus (ETM+) Daten wird für die Ableitung von Informationen zu Feuchtgebietsverteilung und Vegetationsbedeckung herangezogen. Zeitserien der Auftautiefe werden zur Beschreibung des Auftauens bzw. Rückfrierens des Bodens verwendet. Diese Faktoren sind die Haupteinflussgrößen für die Modellierung von Methanemissionen aus permafrostbeeinflussten Tundraökosystemen. Die vorgestellten Modellergebnisse werden mittels Eddy-Kovarianz-Messungen der Methanflüsse validiert, welche während der Vegetationsperioden der Jahre 2003-2006 im südlichen Teil des Lena Deltas (72°N, 126°E) vom Alfred Wegener Institut für Polar- und Meeresforschung (AWI) durchgeführt wurden. Das Untersuchungsgebiet Lena Delta liegt an der Laptewsee in Nordostsibirien und ist durch Ökosysteme der arktischen nassen polygonalen Tundra sowie kalten kontinuierlichen Permafrost charakterisiert. Zeitlich integrierte Werte der modellierten Methanflüsse sowie der in situ Messungen zeigen gute Übereinstimmungen und weisen auf eine leichte Modellunterschätzung von etwa 10%. / Remaining uncertainties in the carbon budget of high latitude ecosystems are partly due to difficulties in assessing methane emission rates from permafrost soils the source strengths of which are highly variable in space and time. Methane is a globally abundant atmospheric trace gas that contributes significantly to the warming of the atmosphere. Due to the high sensitivity of the arctic soil carbon reservoir and the large surface area underlain by permafrost, arctic regions are most critically influenced by a changing climate. This dissertation addresses the need for modelling approaches to determine the source strength of northern Siberian permafrost affected wet polygonal tundra ecosystems with regard to methane emission on the regional scale. It presents a methodical structure wherein two process-based models are used to capture the complex interrelated processes between pedosphere, biosphere and atmosphere that lead to methane emission from permafrost soils on the regional scale. Upscaling of methane fluxes for a larger permafrost site is performed using results of a process-based model. The process-based vegetation model Biosphere Energy Transfer Hydrology Model (BETHY/DLR) is applied to estimate net primary productivity (NPP) of arctic tundra vegetation. NPP is parameterized as a measure for substrate availability for methane production and thus an important input parameter for the second model: the process-based wetland methane emission model is subsequently used to explicitly model methane fluxes for a given soil column, taking into account methanogenesis, methane oxidation and three different transport mechanisms, namely molecular diffusion, ebullition and plant-mediated transport through vascular plants. The methane emission model is modified for permafrost conditions by explicitly considering daily thawing of permafrost during the short arctic growing season. Model forcing consists of meteorological data sets obtained from the European Center for Medium-Range Weather Forecasts (ECMWF). Input data sets are validated against field measurements. Auxiliary input data for both models are derived from satellite imagery and validated by field spectral measurements. A modified land use/land classification (LULC) scheme based on Landsat-7 Enhanced Thematic Mapper Plus (ETM+) data is used to derive information on wetland distribution and vegetation cover. Time series of active layer thickness are used to describe thawing/freezing of soils. These parameters are key factors in modelling methane emissions from permafrost influenced tundra ecosystems. Validation of presented model results is performed using eddy covariance measurements of methane flux on the landscape scale carried out during the growing seasons 2003-2006 in the southern part of the Lena Delta (72°N, 126°E) by Alfred Wegener Institute for Polar and Marine Research (AWI). The Lena Delta study site is located at the Laptev Sea in northeast Siberia and is characterized by arctic wet polygonal tundra ecosystems and cold continuous permafrost. Timeintegrated values for modelled methane fluxes and in situ measurements compare reasonably well and indicate a moderate model underestimation of about 10%.
|
17 |
Regionale Niederschlagsänderungen in Namibia bei anthropogen verstärktem Treibhauseffekt / Regional rainfall changes in Namibia under conditions of man-made enhanced greenhouse warmingBeyer, Ulrike January 2001 (has links) (PDF)
Diese Dissertation präsentiert Ergebnisse regionaler Niederschlagsabschätzungen für Namibia bei anthropogen verstärktem Treibhauseffekt, die mit der Methode des Statistischen Downscaling erzielt wurden. Über statistische Transferfunktionen werden Beziehungen zwischen großskaliger atmosphärischer Zirkulation und Namibischen Sommerregen aufgestellt. Dazu werden in einer 30-jährigen Kalibrierungsperiode Hauptkomponenten von Geopotentiellen Höhen verschiedener atmosphärischer Niveaus (300, 500, 1000hPa) mit den Niederschlagsmonatssummen (November bis März) von 84 Namibischen Stationen durch multiple Regressionsanalysen verknüpft, die für jede Station oder alternativ für Gitternetzniederschlagsdaten berechnet werden. Nach der Verifikation der statistischen Zusammenhänge in einem unabhängigen Zeitraum werden Regressionsmodelle jener Stationen bzw. Gitterpunkte selektiert, die mit signifikanten Korrelationen von r>0.4 zwischen beobachteten und modellierten Werten ausreichende Qualität garantieren. Diese Modelle werden eingesetzt, um unter Verwendung simulierter ECHAM3-T42 und ECHAM4tr-T42 Geopotentialdaten den lokalen Niederschlag für die jeweiligen Treibhauseffekt-Szenarien abzuschätzen. Als zusätzliche Methode, um die großskalige atmosphärische Zirkulation mit lokalen Stationsdaten zu verknüpfen, werden kanonische Korrelationsanalysen durchgeführt. Unabhängig von der Verfahrensweise resultieren für Klimabedingungen dreifacher bzw. transient ansteigender CO2-Konzentrationen im Vergleich zu einem Referenzzeitraum (1961-90) zunehmende Niederschläge in den nördlichen und östlichen Teilen Namibias von Dezember bis Februar. In den südlichen und südwestlichen Regionen sind von November bis Januar geringe Abnahmen zu verzeichnen. Die Abschätzungen für März zeigen einen deutlichen Rückgang der Niederschläge in ganz Namibia. Diese Ergebnisse weisen auf eine intensivierte, akzentuiertere Regenzeit hin, auch wenn die Gesamtmenge der Niederschläge unter Bedingungen des anthropogen verstärkten Treibhauseffekts mehr oder weniger gleich bleibt. Daher ist es von besonderer Bedeutung, die Abschätzungen der Niederschlagsänderungen auf monatlicher Ebene durchzuführen. Weitere Untersuchungen beinhalten die Trennung thermischer und dynamischer Effekte in den zur Abschätzung herangezogenen ECHAM3 und ECHAM4 Zirkulationsdaten. Durch die globale Erwärmung kommt es zu einer Anhebung der Geopotentiellen Höhen der Treibhauseffekt-Szenarien. Durch die Korrektur des Uplifting-Prozesses werden dynamisch induzierte Auswirkungen auf das Niederschlagsgeschehen erfasst. Áus der Verwendung uplifting-korrigierter Geopotentialdaten als Prädiktoren in der Downscaling-Prozedur resultieren sowohl im positiven als auch negativen Bereich geringere Änderungsraten in den Abschätzungsergebnissen. Ohne Zweifel reagiert das Klimasystem auf den anthropogen verstärkten Treibhauseffekt. In Bezug auf zukünftige Namibische Sommerregen ist es von besonderer Bedeutung die Auswirkungen des Treibhauseffekts regional und temporal zu differenzieren. / This thesis presents results of regional rainfall assessments in Namibia, under conditions of man-made enhanced greenhouse warming. The results are obtained by statistical downscaling procedures. Relations between large-scale atmospheric circulation and Namibian summer rainfall are established by statistical transfer functions. For this purpose, principle components of geopotential heights of different atmospheric levels (300, 500, 1000hPa) and monthly rainfall data of 84 Namibian stations are linked by stepwise multiple regression analyses for every station, or alternatively for gridded rainfall data. The analyses were done on a monthly basis (November – March) during a 30-year calibration period. After verifying these statistical relations in an independent period, stations, or grids, with regression models of sufficient quality (significant correlation r>0.4 between observed and modeled data) are selected and used to assess local rainfall for greenhouse gas-scenarios from simulated ECHAM3-T42 and ECHAM4tr-T42 geopotential height data. As additional method to connect large scale circulation features with local station rainfall data, canonical correlation analyses are applied. Independent of the procedure, results for climate conditions of threefold respectively transient increase in CO2-concentrations, compared to a reference period (1961-90), show an increase of rainfall in northern and eastern parts of Namibia for December to February. Slight decreases in southern and southwestern regions from November to January are seen. Assessments for March indicate a distinct decrease over the whole country. These findings point to an intensified, more accentuated rainy season, however, the amount of rainfall remains more or less the same under conditions of enhanced greenhouse warming. Therefore it is of special importance to assess rainfall changes on a monthly basis. Further investigations consist of the separation of thermal and dynamical effects in ECHAM3 and ECHAM4 circulation data. Global warming produces a thermal uplifting of the geopotential heights used in climate change scenarios. By correction of this uplifting process, dynamical induced effects of rainfall events are captured. The use of uplifting corrected geopotential heights as predictors in the downscaling procedure in general leads to smaller changes of rainfall in the assessment results, both in positive and negative range. There is no doubt that the climate system reacts to man-made enhanced greenhouse warming. With regard to future Namibian summer rainfall, it is important to differentiate the effects of greenhouse warming on a regional and temporal scale.
|
18 |
Development of a modified dynamic energy and greenhouse gas reduction planning approach through the case of Indian power sectorMathur, Jyotirmay. Unknown Date (has links) (PDF)
University, Diss., 2001--Essen.
|
19 |
Organic carbon sequestration in soils an investigation of five profiles in Hesse, Germany /Wiseman, Clare L. S. Unknown Date (has links)
University, Diss., 2003--Frankfurt (Main).
|
20 |
Methodenhandbuch Stoffstromorientierte Bilanzierung der Klimagaseffekte: Methoden zur Bestimmung von Technologiekennwerten, Gestehungskosten und Klimagaseffekten von Vorhaben im Rahmen des BMU-Förderprogramms „Energetische Biomassenutzung“Thrän, Daniela, Pfeiffer, Diana 18 July 2022 (has links)
Optimierungen mit mehr als einer Zielgröße haben es in sich – das weiß jeder Forscher
und jede Forscherin, die sich mit der Weiterentwicklung von Prozessen und Konzepten beschäftigt
hat. Effizienter Klimaschutz, Energieeffizienz und Nachhaltigkeit sind die Ziele,
denen sich das BMU-Förderprogramm zur „Optimierung der energetischen Biomassenutzung“
(Kurztitel: „Energetische Biomassenutzung“) im Rahmen der Klimaschutzinitiative
verschrieben hat. Auch wenn diese Ziele auf den ersten Blick nicht widersprüchlich erscheinen,
ergeben sich doch bei näherem Hinsehen generelle Definitionsfragen (z. B. was ist ein
nachhaltiges Biomassepotenzial) als auch Unwägbarkeiten, in wieweit man sich das eine
im Detail vornehmen und das andere trotzdem lassen kann (z. B. bei der Betrachtung von
Umwelteffekten). Und Optimierung braucht immer Messgrößen für ihre Bestimmung. Auch
hier sind von generellen Fragen bis hin zur spezifischen Festlegung der Systemgrenzen ein
Strauß von Einzelfragen aufgeworfen – ohne Aussicht auf zweifelsfreie und allgemeingültige
Antworten. In der Summe heißt das: Der Versuch, Bewertungsmethoden zu harmonisieren
und einfach und transparent möglichst vielen Forschungsvorhaben verfügbar zu
machen, ist risikobehaftet, mühsam und im Ergebnis immer ein Kompromiss.
Das hier vorgelegte Methodenhandbuch versteht sich als eben solcher Kompromiss: es
bietet Ansatzstellen, die vielfältigen Einzelvorhaben des Programms „Energetische Biomassenutzung“
zusammen zu führen und die Anschlussfähigkeit der Bewertungsergebnisse zu
verbessern. Die vorgeschlagenen Dokumentationsvorlagen und Methoden basieren dabei
auf dem Stand der Wissenschaft und reichen von der Berichterstattung (wie vorgegangen
wurde) bis zur detailliert benannten Berechnungsmethode. Sie beschränken sich auf ausgewählte
Fragestellungen und liefern keine vollständige Nachhaltigkeitsbewertung. Es ist
das Ergebnis eines vierjährigen Diskussionsprozesses, für dessen Unterstützung ich allen
Programmbeteiligten danke. Wertvolle Beiträge wurden in Arbeitsgruppen und Workshops
generiert, an dieser Stelle sei das Engagement der Arbeitsgruppen „Potenziale“, „Ökobilanzen“,
„Thermochemische Vergasung“ und „Referenzsysteme“ besonders erwähnt.
Die hier vorgelegte Fassung des Methodenhandbuchs steht nun zur Anwendung zur Verfügung
und bildet mit den abgestimmten Referenzsystemen nicht zuletzt auch eine Brücke
zur Gesamteinordnung der Forschungsvorhaben und des Förderprogramms in die Klimaschutzinitiative
der Bundesregierung. Zweifelsohne können die dargestellten Ansätze und
Berechnungsverfahren nur einen ersten Aufschlag darstellen, der sowohl wissenschaftlich
als auch in der praktischen Anwendung weiter entwickelt werden kann und soll. Für diese
und die weiteren Herausforderungen rund um Methodenharmonisierungen ist auch in Zukunft
die konstruktive und fruchtbare Zusammenarbeit im Programm unerlässlich. Dahinter
stehen unverändert das Ziel und die Notwendigkeit, die energetische Biomassenutzung
Schritt für Schritt weiter zu optimieren.
|
Page generated in 0.0463 seconds