11 |
Hydrogenation of naphthalene and coal tar distillate over Ni/Mo/Al₂O₃ catalyst in a trickle bed reactorBhagavatula, Abhijit. January 1900 (has links)
Thesis (M.S.)--West Virginia University, 2009. / Title from document title page. Document formatted into pages; contains xii, 119 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 114-119).
|
12 |
The morphology of solid-liquid contacting efficiency in trickle-bed reactorsVan Houwelingen, Arjan J 02 May 2006 (has links)
Trickle-flow is traditionally modeled by means of hydrodynamic parameters such as liquid holdup, two-phase pressure drop and wetting efficiency. Several studies showed that these parameters are not only a function of flow conditions and bed properties, but also of the flow history and morphology of flow. These can have a major influence on the distribution in the bed. The effect of flow morphology on liquid holdup and pressure drop is widely discussed in literature, but little attention is paid to its effect on wetting efficiency. Trickle-bed reactor models suggest that not a only bed-averaged but also the distribution of wetting efficiency may be of importance for reactor performance. Both the average wetting efficiency and the distribution of wetting are probably a function flow history and morphology. The distribution of wetting efficiency for different flow morphologies were investigated by means of a colorometric method that was developed for this purpose. Representative wetting distributions could be obtained. Flow morphologies and liquid distributions were manipulated by means of the pre-wetting procedure that was performed prior to flow. Pulse and Levec pre-wetted beds were investigated. These distributions were explained in detail in terms of flow morphology. It was found that the average wetting efficiency in pulse pre-wetted beds are much higher than in Levec pre-wetted beds. All particles in the pulse pre-wetted beds at all investigated flow conditions were contacted by the flowing liquid. This was not the case for the Levec pre-wetted beds. It was found that the flow in Levec pre-wetted beds become similar to that in pulse pre-wetted beds at high liquid flow rates. It was investigated how these distributions can affect reactor modeling, based on popular particle-scale models that relate reactor efficiency to wetting efficiency. According to these models, the wetting efficiency distribution in pulse pre-wetted beds can be characterised by means of only its average value. This is not the case for Levec pre-wetted beds. These results are however a strong function of the models that were employed. Finally, some recommendations are made in terms of the preferred pre-wetting method or flow morphology for different types of reactions. These recommendations are also based on models and have not been verified with experiments. / Dissertation (MEng (Chemical Engineering))--University of Pretoria, 2007. / Chemical Engineering / unrestricted
|
13 |
Drip Irrigation: The BasicsCall, Robert, Daily, Cado 03 1900 (has links)
2 pp. / Drip irrigation is the slow, measured application of waer through devices called emitters. Now a wide variety of quality products has been developed to make drip irrigation reliable and easy.
|
14 |
Resposta da lima ácida \'Tahiti\' (Citrus latifolia Tan.) a diferentes porcentagens de área molhada / Response of Tahiti lime fruits (Citrus latifólia Tan.) to different percentages of wet areaRocha, Fábio Jordão 03 February 2009 (has links)
A irrigação na citricultura ganhou grande importância nos últimos oito anos, devido à utilização de porta-enxertos menos tolerantes a seca. Hoje grande parte da citricultura irrigada é feita por gotejamento, sistema em que apenas uma porcentagem do sistema radicular recebe água. Esses pontos tornam de grande valia estudos relacionados às respostas das plantas submetidas a diferentes áreas molhadas de solo e também ao estresse hídrico. Esse trabalho foi conduzido com o objetivo de avaliar as respostas fisiológicas de lima ácida Tahiti a pequenas porcentagens de área molhada. Foi avaliada condutância estomática (gs), transpiração (T), temperatura foliar (Tf), potencial de água na folha (), teor de clorofila e produtividade e qualidade de frutos. O experimento foi conduzido na fazenda Areão ESALQ/USP, Piracicaba, SP, em um pomar de 1ha de lima ácida Tahiti (Citrus latifolia Tanaka) enxertadas em citromelo Swingle (Poncitrus trifoliata (L.) x Citrus paradisi Macf.) no espaçamento 7x4m e irrigados por gotejamento. Para leituras de condutância estomática e transpiração foi utilizado um porômetro de equilíbrio dinâmico e balanço nulo LI-COR 1600 (Licor, Inc., Lincoln, EUA). Para temperatura da folha foi utilizado um termômetro de infravermelho (Scantenp). Para determinação de potencial de água na folha foi utilizado uma camâra de Scholander (Modelo 3005 Soil Mosture Equipament Co., Santa Bárbara, CA, EUA), e para determinação do teor de clorofila foi utilizado o um clorofiLOG (Falker). A avaliação de qualidade de frutos foi feita seguindo as metodologias propostas por Bleinroth et al. (1976). As diferentes porcentagens de área molhada foram dadas por diferentes números e tipos de gotejadores, de forma a aplicar sempre a mesma lâmina de irrigação. Os resultados mostraram que não houve diferença significativa entre os tratamentos para gs, T, e Tf, porém Tf foi sempre superior a temperatura do ar, podendo ser um indicador de deficiência hídrica. Quanto ao potencial hídrico das folhas, o tratamento não irrigado apresentou menores valores em relação aos tratamentos de maior área irrigada. O tratamento não irrigado também apresentou menores teores de clorofila, principalmente o teor de clorofila b, na face sul (mais sombreada). A produção e qualidade de frutos não apresentaram diferenças significativas. / The irrigation in citrus gained great importance in the last eight years, due to the use of rootstocks less tolerant to drought. Currently, much of the citrus is irrigated by drip irrigation system, where only a percentage of the root system receives water. These items make great value for studies related to the responses of plants subjected to different áreas of wet soil and also to water stress. This study aimed to evaluate the physiological responses of Tahiti lime fruit a small percentage of wetted area. Was evaluated stomatal conductance (gs), transpiration (T), leaf temperture (Tf), the leaf water potential (), chlorophyll content and productivity and quality of fruit. The experiment was conducted at the farm Areão ESALQ/USP, Piracicaba, Brazil, in a orchard of 1 ha of Tahit lime fruit (Citrus latifolia Tanaka) grafted in a citromelo Swingle (Poncitrus trifoliata (L.) x Citrus paradise Macf.) in a spacing of 7x4 m. For readings of stomatal condutance and transpiration was used a steady-state null-balcance porometer. For leaf temperature was used a infrared thermometer (Scantenp). To determine the potential of water on the sheet was used a Board of Scholander (Model 3005 - Soil Mosture Equipament Co., Santa Barbara, CA), and to determine the level of chlorophyll was used a clorofiLOG (Falker). The evaluate of quality of fruits was made following the methodology proposed by Bleinroth et al. (1976). The different percentages of wetted area were given by different numbers and types of drip, so as to always apply the same depth of irrigation. The results showed that there was no significant difference among treatments for gs, T, and Tf, but Tf was always higher than the air temperature and can be an indicator of water stress. As the water potential of the leaves, the non-irrigated treatment had lower values in relation to treatment of larger irrigated área. The nonirrigated treatment had lower levels of chlorophyll, especially the content of chlorophyll b, in the south side (more shaded). The production and quality of fruit showed no significant differences.
|
15 |
Enhancing properties of biodiesel via heterogeneous catalysisAnwar, Adeel January 2016 (has links)
Biodiesel is a re-emerging biofuel as an alternative to the traditional petroleum derived diesel. There are however, several factors that currently hinder the widespread uptake. Majority of the biodiesel are currently produced from edible oils thereby sparking the food versus fuel debate, the cost of feedstock is significantly high, there are problems experienced in the traditional production process and the resulting fuel is of inadequate quality. This work focused on addressing the issue of poor cold flow properties to improve the overall quality of biodiesel. The skeletal isomerisation of linear fatty acid methyl esters (FAMEs) into branched chain isomers, using solid acid catalysts, appears to be the most comprehensive solution in enhancing the cold flow properties of biodiesel. However, obtaining high branched chain yields, mitigation of undesired side reactions, achieving shorter reaction times, using fewer processing steps and lower operating conditions have still not been achieved to a large extent. Moreover, no studies were found to date investigating isomerisation of FAMEs as a continuous process. A trickle bed reactor (TBR) system has been identified to be an effective continuous reactor. Its key features of being a three phase system and allowing a high degree of contact between the reactant and the catalyst offering a high conversion per unit volume provides an encouraging opportunity to lower reaction times, reaction steps and conditions whilst increasing branched chain yields. This thesis explores the use of the TBR system, for the first time, to enhance the cold flow properties of biodiesel through molecular modification using zeolite beta catalyst with Si/Al ratios of 180 and 12.5. A range of reactions have been investigated including isomerisation, dewaxing (hydroisomerisation and hydrocracking) and decarboxylation on biodiesels derived from camelina, palm and coconut oils. Significant progress has been made in this research area with a 7 °C drop in MP being achieved upon the dewaxing of the coconut biodiesel at 250 °C, 1.01 bar pressure, 0.2 ml/min LF and 37.5 ml/min GF. To achieve greater drops in melting points it has been suggested to investigate mesoporous catalysts as they will ensure greater facilitated molecular access to the active sites, resulting in a higher conversion by preventing pore blockages. All in all, a series of key findings and serendipitous discoveries have brought to surface an array of new challenges as well as paving the way for a host of exciting opportunities for future research. The ability to continuously produce high quality renewable fuel offers a fascinating prospective for various industrial associates such as Argent Energy, Olleco, Neste Oil and ConocoPhillips.
|
16 |
Development of an Immobilized Nitrosomonas europaea Bioreactor for the Production of Methanol from MethaneThorn, Garrick J. S. January 2006 (has links)
This research investigates a novel approach to methanol production from methane. The high use of fossil fuels in New Zealand and around the world causes global warming. Using clearer, renewable fuels the problem could potentially be reduced. Biomass energy is energy stored in organic matter such as plants and animals and is one of the options for a cleaner, renewable energy source. A common biofuel is methane that is produced by anaerobic digestion. Although methane is a good fuel, the energy is more accessible if it is converted to methanol. While technology exists to produce methanol from methane, these processes are thermo-chemical and require large scale production to be economic. Nitrosomonas europaea, a nitrifying bacterium, has been shown to oxidize methane to methanol (Hyman and Wood 1983). This research investigates the possibility of converting methane into methanol using immobilized N. europaea for use in smaller applications. A trickle bed bioreactor was developed, containing a pure culture of N. europaea immobilized in a biofilm on ceramic raschig rings. The reactor had a biomass concentration of 7.82 ± 0.43 g VSS/l. This was between 4 – 15 times higher than other systems aimed at biologically producing methanol. However, the immobilization dramatically affected the methanol production ability of the cells. Methanol was shown to be produced by the immobilized cells with a maximum production activity of 0.12 ± 0.08 mmol/gVSS.hr. This activity was much lower than the typical reported value of 1.0 mmol/g dry weight.hr (Hyman and Wood 1983). The maximum methanol concentration achieved in this system was 0.129 ± 0.102 mM, significantly lower than previous reported values, ranging between 0.6 mM and 2 mM (Chapman, Gostomski, and Thiele 2004). The results also showed that the addition of methane had an effect on the energy gaining metabolism (ammonia oxidation) of the bacteria, reducing the ammonia oxidation capacity by up to 70%. It was concluded, because of the low methanol production activity and the low methanol concentrations produced, that this system was not suitable for a methanol biosynthesis process.
|
17 |
Trickle flow hydrodynamic multiplicityVan der Merwe, Werner. January 2007 (has links)
Thesis (PhD.)(Chemical Engineering)--University of Pretoria, 2007. / Includes abstract. Includes bibliographical references.
|
18 |
Solid-liquid mass transfer in trickle bed reactorsJoubert, Rita. January 2009 (has links)
Thesis (M.Eng.(Chemical engineering))--University of Pretoria, 2009. / Includes bibliographical references.
|
19 |
Modelo matemático para estimativa do tempo de fertirrigaçãoOliveira, Marcus Vinícius Araújo Mello de [UNESP] 20 February 2006 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:32:43Z (GMT). No. of bitstreams: 0
Previous issue date: 2006-02-20Bitstream added on 2014-06-13T19:03:15Z : No. of bitstreams: 1
oliveira_mvam_dr_botfca.pdf: 1358055 bytes, checksum: 3ac2c4d16a15c30e5069fc31a3fdd8ab (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Universidade Estadual Paulista (UNESP) / O sistema de produção agrícola, assim como outros sistemas produtivos, demanda um entendimento das suas diferentes interfaces, resultando tanto no desenvolvimento de novas tecnologias, como no aperfeiçoamento das tecnologias existentes. Dentro desse enfoque, fatores relativos à fertirrigação, bem como ao gerenciamento do sistema agrícola irrigado fertirrigado devem ser melhor estudados e compreendidos. O tempo de funcionamento de um sistema de irrigação - fertirrigação, leva em consideração duas situações distintas de manejo: a) quando não existe lâmina de irrigação a ser reposta pelo sistema de irrigação, e b) quando existe uma lâmina de irrigação a ser reposta, superior à lâmina mínima que é aplicada quando o sistema é acionado visando somente a fertirrigação. Na primeira situação, o tempo de funcionamento do sistema de irrigação-fertirrigação tem que ser o mais breve possível; enquanto na segunda, a operação de injeção dos fertilizantes tem que ser localizada dentro do tempo total de funcionamento do sistema, de forma que o fertilizante aplicado não fique localizado fora da área de alcance do sistema radicular. Dentro desse contexto, o presente trabalho teve o objetivo de desenvolver um modelo matemático que auxiliasse no gerenciamento do tempo de funcionamento do sistema de irrigação - fertirrigação. Foram consideradas variáveis do modelo, parâmetros presentes em plantas hidráulicas de sistemas de irrigação, como: comprimentos e diâmetros das linhas principal, derivação e lateral. As vazões nas diferentes partes do sistema de irrigação, e aspectos relativos a solução de fertilizantes injetada, como: volume de solução e quantidade de fertilizante fornecido também foram considerados. A validação do trabalho foi realizada 2 comparando dados da dinâmica temporal e espacial do K em dois sistemas de irrigação... . / The agricultural production system , as well as others productive systems, demand an agreement of its different interfaces, resulting on the development of new technologies, as the improvement of established technologies. Considering this approach, fertigation factors , as well as the management of the irrigated fertigated agricultural system, must be better studied and understood. The operation time of an irrigation-fertigation system, has to consider two distinct management situations : a) when there is no irrigation depths to be applied by the irrigation system, and b) when an irrigation depth exists to be restituted, superior to minimum depth that is applied when the only aims the fertigation practice. In the first situation, the operation time of the irrigation-fertigation system has to be as brief as possible; while in the second, the operation of fertilizers injection has to be placed during the total time of system operation, as applied fertilizer is not located below root system depth . In this context, the present work had the objective of developing a mathematical model that assisted in management operation time of agricultural system, irrigated by trickle irrigation, and where the fertigation is practiced. It has been considered variables of the model, parameters of hydraulical irrigation systems designs, as: lengths and diameters of the mainline, derivation and lateral lines. Relative flows in the different parts of irrigation system, and aspects about fertilizer solution , as: volume of solution and amount of fertilizer supplied also had been considered. The validation of the model was carried out by comparing the temporal and spatial dynamics of K in two irrigation systems, an experimental and a commercial one. From the resulting model , it was developed a computational applicatory called Gerferti - Fertigation Management... (Complete abstract, click electronic address below).
|
20 |
Resposta da lima ácida \'Tahiti\' (Citrus latifolia Tan.) a diferentes porcentagens de área molhada / Response of Tahiti lime fruits (Citrus latifólia Tan.) to different percentages of wet areaFábio Jordão Rocha 03 February 2009 (has links)
A irrigação na citricultura ganhou grande importância nos últimos oito anos, devido à utilização de porta-enxertos menos tolerantes a seca. Hoje grande parte da citricultura irrigada é feita por gotejamento, sistema em que apenas uma porcentagem do sistema radicular recebe água. Esses pontos tornam de grande valia estudos relacionados às respostas das plantas submetidas a diferentes áreas molhadas de solo e também ao estresse hídrico. Esse trabalho foi conduzido com o objetivo de avaliar as respostas fisiológicas de lima ácida Tahiti a pequenas porcentagens de área molhada. Foi avaliada condutância estomática (gs), transpiração (T), temperatura foliar (Tf), potencial de água na folha (), teor de clorofila e produtividade e qualidade de frutos. O experimento foi conduzido na fazenda Areão ESALQ/USP, Piracicaba, SP, em um pomar de 1ha de lima ácida Tahiti (Citrus latifolia Tanaka) enxertadas em citromelo Swingle (Poncitrus trifoliata (L.) x Citrus paradisi Macf.) no espaçamento 7x4m e irrigados por gotejamento. Para leituras de condutância estomática e transpiração foi utilizado um porômetro de equilíbrio dinâmico e balanço nulo LI-COR 1600 (Licor, Inc., Lincoln, EUA). Para temperatura da folha foi utilizado um termômetro de infravermelho (Scantenp). Para determinação de potencial de água na folha foi utilizado uma camâra de Scholander (Modelo 3005 Soil Mosture Equipament Co., Santa Bárbara, CA, EUA), e para determinação do teor de clorofila foi utilizado o um clorofiLOG (Falker). A avaliação de qualidade de frutos foi feita seguindo as metodologias propostas por Bleinroth et al. (1976). As diferentes porcentagens de área molhada foram dadas por diferentes números e tipos de gotejadores, de forma a aplicar sempre a mesma lâmina de irrigação. Os resultados mostraram que não houve diferença significativa entre os tratamentos para gs, T, e Tf, porém Tf foi sempre superior a temperatura do ar, podendo ser um indicador de deficiência hídrica. Quanto ao potencial hídrico das folhas, o tratamento não irrigado apresentou menores valores em relação aos tratamentos de maior área irrigada. O tratamento não irrigado também apresentou menores teores de clorofila, principalmente o teor de clorofila b, na face sul (mais sombreada). A produção e qualidade de frutos não apresentaram diferenças significativas. / The irrigation in citrus gained great importance in the last eight years, due to the use of rootstocks less tolerant to drought. Currently, much of the citrus is irrigated by drip irrigation system, where only a percentage of the root system receives water. These items make great value for studies related to the responses of plants subjected to different áreas of wet soil and also to water stress. This study aimed to evaluate the physiological responses of Tahiti lime fruit a small percentage of wetted area. Was evaluated stomatal conductance (gs), transpiration (T), leaf temperture (Tf), the leaf water potential (), chlorophyll content and productivity and quality of fruit. The experiment was conducted at the farm Areão ESALQ/USP, Piracicaba, Brazil, in a orchard of 1 ha of Tahit lime fruit (Citrus latifolia Tanaka) grafted in a citromelo Swingle (Poncitrus trifoliata (L.) x Citrus paradise Macf.) in a spacing of 7x4 m. For readings of stomatal condutance and transpiration was used a steady-state null-balcance porometer. For leaf temperature was used a infrared thermometer (Scantenp). To determine the potential of water on the sheet was used a Board of Scholander (Model 3005 - Soil Mosture Equipament Co., Santa Barbara, CA), and to determine the level of chlorophyll was used a clorofiLOG (Falker). The evaluate of quality of fruits was made following the methodology proposed by Bleinroth et al. (1976). The different percentages of wetted area were given by different numbers and types of drip, so as to always apply the same depth of irrigation. The results showed that there was no significant difference among treatments for gs, T, and Tf, but Tf was always higher than the air temperature and can be an indicator of water stress. As the water potential of the leaves, the non-irrigated treatment had lower values in relation to treatment of larger irrigated área. The nonirrigated treatment had lower levels of chlorophyll, especially the content of chlorophyll b, in the south side (more shaded). The production and quality of fruit showed no significant differences.
|
Page generated in 0.0336 seconds