1 |
Trigonometria, nÃmeros complexos e aplicaÃÃes / Trigonometry, complex numbers and applicationsThiago do Carmo Lima 25 September 2015 (has links)
CoordenaÃÃo de AperfeÃoamento de Pessoal de NÃvel Superior / O presente trabalho foi dividido em trÃs partes: trigonometria no triÃngulo retÃngulo, trigonometria no ciclo trigonomÃtrico, nÃmeros complexos. No triÃngulo retÃngulo foram definidos os valores do seno, cosseno, tangente, cotangente, cossecante e secante dos Ãngulos notÃveis: 18Â, 30Â, 45Â, 60Â alÃm das suas derivaÃÃes. Propriedades importantes como a relaÃÃo trigonomÃtrica fundamental foram demonstradas. No ciclo trigonomÃtrico alÃm das propriedades advindas do triÃngulo retÃngulo foram apresentadas e provadas outras como as leis do seno e do cosseno, relaÃÃes trigonomÃtricas de Ãngulos maiores que 90Â e da soma e diferenÃa de arcos, equaÃÃes trigonomÃtricas. Na parte de nÃmeros complexos foi apresentado o nÃmero i e suas propriedades juntamente com as formas algÃbrica e geomÃtrica de um nÃmero complexo. Neste ponto foi visto a importÃncia da trigonometria para o desenvolvimento da fÃrmula de Moivre. No apÃndice, temos provado as potÃncias do nÃmero (i) e a tabela trigonomÃtrica. / This study was divided into three parts: the right triangle trigonometry, trigonometry in trigonometric cycle, complex numbers. In the right triangle the sine values were defined, cosine, tangent, cotangent, cosecant and drying of the remarkable angles: 18Â, 30Â, 45Â, 60Â beyond its derivations. Important properties as the fundamental trigonometric relationship were demonstrated. Trigonometric cycle in addition to the resulting properties of the right triangle were presented and other proven as the laws of sine and cosine, trigonometric relationship of angles greater then 90Â and the sum and difference of arcs, trigonometric equations. In the complex numbers was made the number in their properties along with the algebraic and geometric forms a complex number. At this point it has been seen trigonometric to the importance of the development of Moivre formula. In the appendix we have tasted the powers of the number (i) and the trigonometric table.
|
Page generated in 0.1641 seconds