• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthesis of low density foam shells for inertial confinement fusion experiments / Synthese de microballons en mousse organique basse densité pour les études de fusion par confinement inertiel

Lattaud, Cecile 27 September 2011 (has links)
Ce travail porte sur le processus de fabrication de microballons en mousse basse densité et le contrôle fin de leur forme (diamètre, épaisseur, densité, sphéricité, non-concentricité). Durant cette thèse nous nous sommes concentrés sur le critère de non-concentricité qui doit être inférieure à 1%. Les microballons sont synthétisés en utilisant un procédé de microencapsulation conduisant à une émulsion double, suivie d'une polymérisation thermique à 60°C. Selon la littérature, trois paramètres majeurs, la densité des trois phases, les déformations du microballon pendant le procédé et la cinétique de polymérisation ont une influence directe sur la non-concentricité des microballons. Les résultats obtenus ont montré que lorsque l'écart de densité entre la phase aqueuse interne et la phase organique augmente, la non-concentricité des microballons TMPTMA s'améliore. Un écart de densité de 0,078 g.cm-3 à 60°C conduit à une non-concentricité moyenne de 2,4% avec un rendement en microballons de 58%. Il a également été montré que la synthèse peut être considérée comme reproductible. Pour une même phase aqueuse interne, les résultats de non-concentricité sont équivalents en utilisant soit un tube droit, un tube à étranglement ou un serpentin court. Le temps requis pour fixer la forme des microballons est d'au moins 20 minutes avec la polymérisation thermique. Ainsi, il semble que le temps passé par les microballons à l'intérieur des bouteilles de réception permet le centrage de la phase aqueuse interne à l'intérieur de la phase organique, quel que soit le processus de circulation précédemment utilisé. Afin d'obtenir des vitesses de polymérisation plus élevées et d'éviter les phénomènes de déstabilisation, nous avons alors concentré notre étude sur la photopolymérisation. Lorsque la synthèse est effectuée en utilisant une lampe UV avec une intensité lumineuse efficace, les microballons ont une épaisseur légèrement supérieure à celle des microballons synthétisés par voie thermique. Par ailleurs, un rendement plus élevé, environ 80%, est obtenu avec la polymérisation UV. Toutefois, la non-concentricité moyenne des microballons synthétisés est environ de 20%, ce qui est vraiment élevé par rapport à la non-concentricité moyenne de 2,4% obtenue par polymérisation thermique. Il serait intéressant d'exposer les microballons à la lumière UV, à différents moments après la collecte afin d'étudier l'influence du temps d'agitation sur la non-concentricité des microballons. / This work deals with the fabrication process of low density foam shells and the sharp control of their shape (diameter, thickness, density, sphericity, non-concentricity). During this PhD we focused on the non-concentricity criterion which has to be lower than 1%. The shells are synthesized using a microencapsulation process leading to a double emulsion and followed by a thermal polymerization at 60°C. According to the literature, three major parameters, the density of the three phases, the deformations of the shells along the process and the kinetics of the polymerization have a direct influence on the shells non-concentricity. The results obtained showed that when the density gap between the internal water phase and the organic phase increases, the TMPTMA shells non-concentricity improves. A density gap of 0.078 g.cm-3 at 60°C, leads to an average non-concentricity of 2.4% with a yield of shells of 58%. It was also shown that the synthesis process can be considered as reproducible. While using the same internal water phase, equivalent non-concentricity results are obtained using either a straight tube, a tube with areas of constriction or a short wound tube. The time required to fix the shell’s shape is at least 20 minutes with thermal polymerization. So, it seems that the time spent by the shells inside the rotating flask allows the centering of the internal water phase inside the organic phase, whatever the circulation process used. In order to get higher polymerization rates and to avoid destabilization phenomena, we then focused our study on photopolymerization. When the synthesis is performed using a UV lamp with an efficient light intensity, the shells have a slightly higher thickness than the shells synthesized by thermal polymerization. Moreover, a really higher yield, around 80%, is achieved with UV polymerization. However, the average non-concentricity of the shells synthesized lays around 20%, which is really high compared to the 2.4% average non-concentricity obtained with thermal polymerization. It would be interesting to expose the shells to UV light at different times after collection in order to study the influence of the agitation time on the shells non-concentricity.
2

Synthesis of low density foam shells for inertial confinement fusion experiments

Lattaud, Cécile 27 September 2011 (has links) (PDF)
This work deals with the fabrication process of low density foam shells and the sharp control of their shape (diameter, thickness, density, sphericity, non-concentricity). During this PhD we focused on the non-concentricity criterion which has to be lower than 1%. The shells are synthesized using a microencapsulation process leading to a double emulsion and followed by a thermal polymerization at 60°C. According to the literature, three major parameters, the density of the three phases, the deformations of the shells along the process and the kinetics of the polymerization have a direct influence on the shells non-concentricity. The results obtained showed that when the density gap between the internal water phase and the organic phase increases, the TMPTMA shells non-concentricity improves. A density gap of 0.078 g.cm-3 at 60°C, leads to an average non-concentricity of 2.4% with a yield of shells of 58%. It was also shown that the synthesis process can be considered as reproducible. While using the same internal water phase, equivalent non-concentricity results are obtained using either a straight tube, a tube with areas of constriction or a short wound tube. The time required to fix the shell's shape is at least 20 minutes with thermal polymerization. So, it seems that the time spent by the shells inside the rotating flask allows the centering of the internal water phase inside the organic phase, whatever the circulation process used. In order to get higher polymerization rates and to avoid destabilization phenomena, we then focused our study on photopolymerization. When the synthesis is performed using a UV lamp with an efficient light intensity, the shells have a slightly higher thickness than the shells synthesized by thermal polymerization. Moreover, a really higher yield, around 80%, is achieved with UV polymerization. However, the average non-concentricity of the shells synthesized lays around 20%, which is really high compared to the 2.4% average non-concentricity obtained with thermal polymerization. It would be interesting to expose the shells to UV light at different times after collection in order to study the influence of the agitation time on the shells non-concentricity.

Page generated in 0.0743 seconds