• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 183
  • 26
  • 21
  • 12
  • 6
  • 6
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 291
  • 74
  • 70
  • 64
  • 57
  • 56
  • 46
  • 46
  • 33
  • 31
  • 30
  • 28
  • 23
  • 23
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

Unusual tRNA nucleotidyltransferases: Adaptation of the Romanomermis culicivorax CCA-adding enzyme towards armless tRNAs and characterization of the phosphodiesterase domain of the Escherichia coli CCA-adding enzyme

Philipp, Susanne 11 April 2022 (has links)
tRNAs spielen eine zentrale Rolle in jedem bekannten Organismus. Sie agieren als Adaptoren, um den Code der Nukleinsäuren in eine funktionale Aminosäuresequenz zu übersetzen. Ihre Struktur folgt einer hoch konservierten Kleeblattform, die aus dem D-Arm, dem Anticodonarm und –loop, dem TΨC-Arm und dem Akzeptorstamm gebildet wird. 5ʹ-und 3ʹ-Ende bilden den Akzeptorstamm, wobei das 3ʹ-Ende mit dem Diskriminator und dem universalen CCA-Triplett um vier Nukleotide herausragt. Das CCA-addierende Enzym führt die Addition dieses CCA-Tripletts durch und ist ubiquitär in Bakterien, Archaeen und Eukaryoten vorhanden. Für diese Arbeit wurden zwei ungewöhnliche Mitglieder der CCA-addierenden Enzyme untersucht: das CCA-addierende Enzym aus dem Nematoden Romanomermis culicivorax als auch das bifunktionale CCA-addierende Enzym aus dem Bakterium Escherichia coli. In den Mitochondrien des Nematoden Romanomermis culicivorax sind tRNAs codiert, die von der Kleeblattstruktur abweichen. Es wurden die Anpassungen des CCA-addierenden Enzyms an diesen abweichenden tRNA Pool charakterisiert. Der zweite Teil dieser Arbeit betrachtet eine Phosphodiesterase-Domäne, die HD Domäne, in den CCA-addierenden Enzymen der Gammaproteobakterien. In vitro zeigt diese HD Domäne die Abspaltung eines 2ʹ,3ʹ-cyclischen Phosphates vom 3ʹ-Ende von tRNA Strukturen. Weiterhin wurde in in vivo Experimenten die Funktion der HD Domäne des CCA-addierenden Enzyms aus Escherichia coli betrachtet. Dabei wurde beobachtet, dass in Escherichia coli der RNA-Pool mit 2ʹ,3ʹ-cyclischen Phosphaten dynamisch auf Nährstoffmangel reagiert. Insbesondere der tRNA-Pool und deren Fragmente zeigten interessante Veränderungen, wenn Escherichia coli hohe Zelldichten erreichte oder von einem nährstoffreichen Medium auf Minimalmedium versetzt wurde.
252

The Differential Regulation of Transfer RNA in Higher Eukaryotes and Their Emerging Role in Malignancy

Pinkard, Otis William, III 26 May 2023 (has links)
No description available.
253

Adaptation of the Romanomermis culicivorax CCA-Adding Enzyme to Miniaturized Armless tRNA Substrates

Hennig, Oliver, Philipp, Susanne, Bonin, Sonja, Rollet, Kévin, Kolberg, Tim, Jühling, Tina, Betat, Heike, Sauter, Claude, Mörl, Mario 10 January 2024 (has links)
The mitochondrial genome of the nematode Romanomermis culicivorax encodes for miniaturized hairpin-like tRNA molecules that lack D- as well as T-arms, strongly deviating from the consensus cloverleaf. The single tRNA nucleotidyltransferase of this organism is fully active on armless tRNAs, while the human counterpart is not able to add a complete CCA-end. Transplanting single regions of the Romanomermis enzyme into the human counterpart, we identified a beta-turn element of the catalytic core that—when inserted into the human enzyme—confers full CCA-adding activity on armless tRNAs. This region, originally identified to position the 30 -end of the tRNA primer in the catalytic core, dramatically increases the enzyme’s substrate affinity. While conventional tRNA substrates bind to the enzyme by interactions with the T-arm, this is not possible in the case of armless tRNAs, and the strong contribution of the beta-turn compensates for an otherwise too weak interaction required for the addition of a complete CCA-terminus. This compensation demonstrates the remarkable evolutionary plasticity of the catalytic core elements of this enzyme to adapt to unconventional tRNA substrates.
254

Proline Codon Translational Fidelity in Rhodopseudomonas palustris: Characterization of Novel Trans-editing Factor ProXp-abu

Bacusmo, Jo Marie 18 September 2014 (has links)
No description available.
255

Fluorescence and NMR Characterization of a T Box Antiterminator-tRNA Complex

Means, John A. January 2007 (has links)
No description available.
256

Translation of the amber codon in methylamine methyltransferase genes of a methanogenic archaeon

Srinivasan, Gayathri 04 February 2004 (has links)
No description available.
257

Genome-wide Investigation of Cellular Functions for tRNA Nucleus-Cytoplasm Trafficking in the Yeast <i>Saccharomyces cerevisiae</i>

Chu, Hui-Yi 24 August 2012 (has links)
No description available.
258

The study of RNA tertiary interactions in tRNA structure and function

Ishii, Tetsu 03 1900 (has links)
Le rôle des deux paires de bases universelles inverse Hoogsteen U : A ( RHUAs ) présentent chez les ARNt standards , une dans la boucle T et l'autre dans le noyau de la forme en L , a été étudiée. Pour chacun des RHUAs , un criblage génétique spécialisé in vivo chez les bactéries , le système suppresseur ambre ( pour l'étude de la RHUA dans la boucle T ) et le système d'ARNt de la sélénocystéine ( tRNASec ) ( pour l'étude de la RHUA dans le noyau ) , ont été utilisé pour générer des variants fonctionnels à partir de multiples librairies combinatoires . Ces variants ont ensuite été séquencé et soumis à une analyse systématique qui comprend la modélisation informatique et un type d'analyse phylogénétique. Les résultats du système suppresseur ambre ont montré un ensemble de variants fonctionnels qui ne nécessitent pas le motif RHUA dans la boucle T et qui ont remplacé la méthode standard de l'interaction entre les boucles D et T avec une double hélice interboucle , ILDH . D'autres études ont abouti à la détermination d'un modèle In silico de l'alternative à la norme standard de la boucle T, sous le nom de type III . Les résultats du système tRNASec ont révélé que pour cette ARNt exceptionnel, l'absence de RHUA ( dans le noyau ) assure une flexibilité accrue qui est spécifiquement nécessaire pour la fonction de tRNASec . Ainsi, les ARNt standards , à la différence de tRNASec , avec la présence universelle de RHUA dans le noyau , a été naturellement sélectionnée pour être rigide . Pris ensemble, la RHUA joue un rôle essentiel dans la stabilisation des interactions tertiaires. / The role of two universally present reverse Hoogsteen U:A base pairs (RHUAs) in the T-loop and in the core of the L-shape of standard tRNA was studied. To study each of the RHUAs, bacterial in vivo genetic screens were used including the amber suppressor system (for the study of the RHUA in the T-loop) and the selenocysteine tRNA(tRNASec) system (for the study of the RHUA in the core). These screens generated functional variants from multiple combinatorial libraries. These variants were subsequently sequenced and subjected to a systematic analysis which included computer modeling and a type of phylogenetic analysis. The results from the amber suppressor system showed a set of functional variants which did not require the RHUA motif in the T-loop, and had replaced the standard way of interaction between the D and T loops with an interloop double helix, ILDH. Further study culminated in the determination of an insilico model of the alternative to the standard T-loop known as type III. The results from the tRNASec system revealed that for this exceptional tRNA, the absence of RHUA (in the core) ensures an enhanced flexibility that is specifically required for tRNASec function. Thus standard tRNAs, unlike tRNASec, with the universal presence of RHUA in the core have been naturally selected to be rigid. Taken together, RHUA plays an essential role in the stabilization of tertiary interactions.
259

Calculations of Reaction Mechanisms and Entropic Effects in Enzyme Catalysis

Kazemi, Masoud January 2017 (has links)
Ground state destabilization is a hypothesis to explain enzyme catalysis. The most popular interpretation of it is the entropic effect, which states that enzymes accelerate biochemical reactions by bringing the reactants to a favorable position and orientation and the entropy cost of this is compensated by enthalpy of binding. Once the enzyme-substrate complex is formed, the reaction could proceed with negligible entropy cost. Deamination of cytidine catalyzed by E.coli cytidine deaminase appears to agree with this hypothesis. In this reaction, the chemical transformation occurs with a negligible entropy cost and the initial binding occurs with a large entropy penalty that is comparable to the entropic cost of the uncatalyzed reaction. Our calculations revealed that this reaction occurs with different mechanisms in the cytidine deaminase and water. The uncatalyzed reaction involves a concerted mechanism and the entropy cost of this reaction appears to be dominated by the reacting fragments and first solvation shell. The catalyzed reaction occurs via a stepwise mechanism in which a hydroxide ion acts as the nucleophile. In the active site, the entropy cost of hydroxide ion formation is eliminated due to pre-organization of the active site. Hence, the entropic effect in this reaction is due to a pre-organized active site rather than ground state destabilization. In the second part of this thesis, we investigated peptide bond formation and peptidyl-tRNA hydrolysis at the peptidyl transferase center of the ribosome. Peptidyl-tRNA hydrolysis occurs by nucleophilic attack of a water molecule on the ester carbon of peptidyl-tRNA. Our calculations showed that this reaction proceeds via a base catalyzed mechanism where the A76 O2’ is the general base and activates the nucleophilic water. Peptide bond formation occurs by nucleophilic attack of the α-amino group of aminoacyl-tRNA on the ester carbon of peptidyl-tRNA. For this reaction we investigated two mechanisms: i) the previously proposed proton shuttle mechanism which involves a zwitterionic tetrahedral intermediate, and ii) a general base mechanism that proceeds via a negatively charged tetrahedral intermediate. Although both mechanisms resulted in reasonable activation energies, only the proton shuttle mechanism found to be consistent with the pH dependence of peptide bond formation.
260

La RNase P mitochondriale chez Neurospora crassa

Minoiu, Ioana 12 1900 (has links)
Résumé La Ribonucléase P (RNase P) est une enzyme principalement reconnue pour sa participation à la maturation en 5’des ARN de transfert (ARNt). Cependant, d’autres substrats sont reconnus par l’enzyme. En général, la RNase P est composée d’une sous-unité ARN (le P-ARN, codé par le gène rnpB) qui porte le centre actif de l’enzyme et d’une ou de plusieurs sous-unités protéiques (la P-protéine). Les P-ARN chez toutes les bactéries, la majorité des archéobactéries et dans le génome nucléaire de la plupart des eucaryotes, possèdent généralement une structure secondaire très conservée qui inclut le noyau (P1-P4); l’hélice P4 constitue le site catalytique de l’enzyme et l’hélice P1 apparie les extrémités du P-ARN en stabilisant sa structure globale. Les P-ARN mitochondriaux sont souvent moins conservés et difficiles à découvrir. Dans certains cas, les seules régions de structure primaire qui restent conservées sont celles qui définissent le P4 et le P1. Pour la détection des gènes rnpB, un outil de recherche bioinformatique, basé sur la séquence et le profil de structure secondaire, a été développé dans le laboratoire. Cet outil permet le dépistage de toutes les séquences eucaryotes (nucléaires et mitochondriales) du gène avec une très grande confiance (basée sur une valeur statistique, E-value). Chez les champignons, plusieurs ascomycètes encodent un gène rnpB dans leur génome mitochondrial y compris tous les membres du genre d’Aspergillus. Cependant, chez les espèces voisines, Neurospora crassa, Podospora anserina et Sordaria macrospora, une version mitochondriale de ce gène n’existe pas. Au lieu de cela, elles contiennent deux copies nucléaires du gène, légèrement différentes en taille et en contenu nucléotidique. Mon projet a été établi dans le but d’éclaircir l’évolution de la RNase P mitochondriale (mtRNase P) chez ces trois espèces voisines d’Aspergillus. En ce qui concerne les résultats, des modèles de structures secondaires pour les transcrits de ces gènes ont été construits en se basant sur la structure consensus universelle de la sous-unité ARN de la RNase P. Pour les trois espèces, par la comparaison de ces modèles, nous avons établi que les deux copies nucléaires du gène rnpB sont assez distinctes en séquence et en structure pour pouvoir y penser à une spécialisation de fonction de la RNase P. Chez N. crassa, les deux P-ARN sont modifiés probablement par une coiffe et les extrémités 5’, 3’ sont conformes à nos modèles, ayant un P1 allongé. Encore chez N. crassa, nous avons constaté que les deux copies sont transcrites au même niveau dans le cytoplasme et que la plus petite et la plus stable d’entre elles (Nc1) se retrouve dans l’extrait matriciel mitochondrial. Lors du suivi du P-ARN dans diverses sous-fractions provenant de la matrice mitochondriale soluble, Nc1 est associée avec l’activité de la RNase P. La caractérisation du complexe protéique, isolé à partir de la fraction active sur un gel non dénaturant, révèle qu’il contient au moins 87 protéines, 73 d’entre elles ayant déjà une localisation mitochondriale connue. Comme chez la levure, les protéines de ce complexe sont impliquées dans plusieurs fonctions cellulaires comme le processing de l’ADN/ARN, le métabolisme, dans la traduction et d’autres (par exemple : la protéolyse et le repliement des protéines, ainsi que la maintenance du génome mitochondrial). Pour trois protéines, leur fonction est non déterminée. / Abstract Ribonuclease P (RNase P) is an endonuclease that cleaves 5’- leader sequences from tRNA precursors and a few other small RNAs. In most cases, the enzyme is a ribonucleo-protein complex (ribozyme), containing an RNA subunit (P-RNA; encoded by the rnpB gene) that carries the active centre of the enzyme, plus one or more protein subunits. P-RNAs in Bacteria, Eukarya and Archaea have a highly conserved secondary structure including the core P1 and P4 helices. P4 forms the catalytic site of the ribozyme, and P1 pairs the RNA termini, stabilizing overall structure and protecting from nuclease degradation. For processing of mitochondrial (mt) tRNAs, certain eukaryotic species (e.g., Saccharomyces cerevisiae, Aspergillus nidulans) have separate mtDNA-encoded P-RNAs (of bacterial origin). Mt P-RNAs are often less conserved, and difficult to discover. To identify rnpB genes, we have developed a search tool based on sequence plus secondary structure profiles. It predicts all known eukaryotic (nuclear and organellar) rnpB genes with high confidence (based on E-values). In fungi, many ascomycetes encode a mitochondrial rnpB gene, including all members of Aspergillus. Yet, the closely related Neurospora crassa, Podospora anserina and Sordaria macrospora lack an mtDNA-encoded gene version. Instead, they contain two nuclear gene copies with slightly different sequences. My project aims to elucidate the evolution of mitochondrial RNase P in these three closely related species. We have established secondary structure models based on comparisons with the universal minimum consensus secondary structure for all nuclear gene mtP-RNAs copies in all three species. By comparison of these secondary structure models, we have established that the two nuclear copies of rnpB gene are quite distinct in sequence and structure, suggesting a specialization of function. In N. crassa, both P-RNAs are modified most likely by capping, and 5’- 3’ termini perfectly conform to P-RNA structure models that have an elongated P1 helical pairing. Furthermore, we find that the two nuclear copies of rnpB gene are present at about the same level in the cytoplasm, and that the shorter form of P-RNA (Nc1) translocates into the (soluble) mitochondrial matrix. When tracing P-RNA in different mitochondrial sub-fractions of a native gel, the presence of Nc1 and mitochondrial RNase P activity are associated. A proteomics characterization of a P-RNA complex isolated by native gel electrophoresis reveals that it contains at least 87 proteins, 73 of which are of known mitochondrial localization. Like in yeast, the complex contains proteins potentially involved in other DNA/RNA processing activities, but also in translation, in metabolism, and in protein folding. Only three proteins are of unknown function.

Page generated in 0.2086 seconds