• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 196
  • 185
  • 52
  • 10
  • 8
  • 6
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 541
  • 153
  • 71
  • 69
  • 65
  • 62
  • 62
  • 61
  • 61
  • 57
  • 51
  • 50
  • 48
  • 47
  • 47
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Kelp culture in integrated multi-trophic aquaculture: expanding the temporal limitations.

Blasco, Nathanial 24 May 2012 (has links)
In integrated multi-trophic aquaculture (IMTA) production of cultured species may not align temporally. For instance, at an IMTA site in Kyuquot Sound, BC where the cultured species are Anoplopoma fimbria (sablefish), Plactopentin yesoensis (Japanese scallop) and Saccharina latissima (sugar kelp), sablefish are grown year round while the kelp culturing lasts from winter to summer. Kelp sporophytes become visible in early spring while harvest takes place in July. This indicates that at Surprise Island the time period of nutrient extraction by the kelp is limited to only a few months per year. Two potentials methods to lengthen the time in which the kelp component was on site were employed and evaluated: 1. the use of multiple kelp species with potentially differing seasonal growth strategies and; 2. outplanting kelp seed at four different times of the year. The first method involved outplanting seed of four kelp species, Saccharina latissima, Costaria costata, Alaria marginata and Saccharina groenlandica and monitoring growth parameters (blade length and yield). For the second method, a modified seed production method of Merrill and Gillingham (1991) with Luning and Dring (1973) successfully provided seed throughout the year. Seasonally out-planted seed was also monitored for growth parameters. Results were marginal for experiments and were confounded by the lack of growth rates due to infrastructure problems, grazing by naturally setting marine snails and seemingly poor environmental conditions for kelp culturing at the farm site. However, data indicated that certain species in co-culture may slightly increase the time period, and strategically entered kelp seed may do the same. In particular the co-culture of C. costaria and S. groenlandica or biannual seed outplanting in fall and spring may increase the length of growth period of kelp provided certain limitations found during this experiment are overcome (i.e. pressures of grazing). Additional potential benefits with these kelp production strategies are the diversification of final kelp products, additional kelp harvests and increased production. / Graduate
32

Feeding and Habitat Preferences of Non-Native Smallmouth Bass (Micropterus dolomieui) in Lakes Throughout British Columbia

Beck, Martina 16 August 2013 (has links)
Characterization of smallmouth bass (Micropterus dolomieu) interaction with native species assemblages, especially salmonids, in lakes throughout BC is prerequisite to identification of high-risk systems warranting on-going monitoring. Therefore this project addresses the following issues: How does smallmouth bass (SMB) trophic profile overlap with native species and does it vary across time and space? Schoener’s index of dietary overlap was not significant between SMB and rainbow trout (Oncorhynchus mykiss; α=0.406, 0.257), or cutthroat trout (Oncorhynchus clarkia; α=0.145, 0.29). Prey fish levels (Ei =35.4%) and the total energetic density (14.91±4.74J/g) of the cutthroat trout diet from Weston Lake (SMB free) were significantly higher compared to the diet of cutthroat trout from Cusheon Lake (Ei =3.3% and 7.69±1.93J/g) where non-native SMB have been introduced. Within the Vancouver Island study lakes, gut-content analysis revealed available signal crayfish serve as an important prey resource in the SMB diet (Ei =34%). What capacity do SMB have to take advantage of seasonal pulses of forage? SMB displayed the ability to rapidly (within 24hrs.) alter their diet and consumption levels (4.7 times higher) to maximize on pulses of rainbow trout fry following a stocking event. SMB did not spatially overlap with spring peaks in salmonid fry runs in the Okanagan lakes, as water temperature remained around the 10°C threshold when SMB are not yet active. Kokanee (Oncorhynchus nerka) fry did however make up Ei =83% of the yellow perch (Perca flavescens) diet. SMB are thriving in locations suspected to be on the limit for their environmental suitability through increased size at age for SMB in the Cariboo region in order to adapt to a longer (by 62 days) winter starvation period. SMB are a generalist predator able to adapt and thrive in very different systems; high vs. low productivity, few or many fish species, crayfish or no crayfish. The likely impacts of this in BC could include shifts in the diet of other fish species and increased costs associated with only stocking larger catchable sized trout in lakes containing non-native SMB. Policy recommendations based on our findings are that SMB introductions into systems that have rainbow/cutthroat trout are likely to cause the highest impacts on our native fisheries in BC if the systems are; highly productive, contain a high diversity of small bodied fish and invertebrate species, lack signal crayfish and large lakes with predominant littoral zones and complex shorelines. / Graduate / 0793 / 0329 / 0792 / mbeck@uvic.ca
33

Ulva lactuca L. as an inorganic extractive component for Integrated Multi-Trophic Aquaculture in British Columbia: An analysis of potentialities and pitfalls

Sherrington, Nicholas Alexander 26 August 2013 (has links)
Ulva as an aquaculture crop and IMTA component species has received mixed results globally; success has been achieved in South Africa and Israel, whilst in Europe the results have been poor. This project aims to determine if Ulva lactuca is a suitable candidate as an inorganic extractive species component within marine IMTA systems in British Columbia. The inorganic extractive feasibility of U. lactuca was determined with combination of real time growth and nutrient uptake experiments, alongside a SWOT analysis and literature review to reveal the possible potentialities and pitfalls. U. lactuca was cultivated in 680 litre tanks in the effluent of Wolf Eels, Anarrhichthys ocellatus in a recirculation system at the Aquatics facility at the University of Victoria. Growth experiments of wild local U. lactuca strains attained summer growth of up to 17.43% specific daily growth rate, with winter growth of up to 4.26% specific daily growth rate. U. lactuca demonstrates a preference for Ammonia-N uptake over other forms of inorganic nitrogen and a reduced nutrient uptake capacity during dark periods. Nitrate uptake capacity up to 202µm N gDW-1 day-1 was exhibited. These figures display the excellent biological potential of local Ulva lactuca strains to act as an inorganic extractive. However currently, long term maintenance of the crop proved problematic with instability with growth rates and nutrient uptake capacity. Cultivation issues in combination with poor economic outlook will restrict the feasibility of this species to specific types of IMTA system. Beneficial steps towards the deployment of U. lactuca inorganic extractive components would include: (i) the identification of suitable sterile strains or employment of “germling” spore production, (ii) the use of a rotational, light weight, cage cultivation system, (iii) being farmed in combination with a dark period nutrient removal species, such as Chondrus crispus, (iv) being farmed in conjunction with in-situ algivorous species. / Graduate / 0792
34

The Use of Stable and Radiocarbon Isotopes as a Method for Delineating Sources of Organic Matter in Anchialine Systems

Neisch, Julie A 03 October 2013 (has links)
Submerged caves, locally referred to as cenotes, can be found throughout the Yucatan Peninsula of Mexico. These nutrient poor, aphotic “underground estuaries” lack photosynthetic primary productivity, but are often found underlying high primary productivity areas such as mangroves and tropical forests. Adjacent ecosystems contribute organic carbon to the cave systems via percolation, where it is then utilized by the obligate, cave-dwelling fish and invertebrates. Another potential pathway through which organic carbon can enter the cave food web is through chemosynthesis. Chemoautotrophic sulfur-oxidizing or nitrifying bacteria have been found in the hydrogen sulfide layer or in the sediments of some anchialine caves. Our study utilizes 13C/12C and 15N/14N stable isotopes as well as 14C radiocarbon dating to determine and compare the sources of organic matter entering a coastal anchialine cave (Cenote Aak Kimin) versus an inland cave (Cenote Maya Blue) in the Yucatan Peninsula. Stable isotopes have long been employed in tropic investigations. This study, however, is the first to utilize radiocarbon isotopes in anchialine caves. The use of both stable and radiocarbon isotopes as source indicators provides greater discrimination in systems that contain numerous carbon sources or indistinct trophic levels, particularly to distinguish between chemoautotrophic versus photosynthetically derived carbon. Results indicate that chemosynthetically derived organic carbon contributes substantially to the diet of some crustaceans, such as the stygobitic shrimp Typhlatya, while other species remain dependent on detrital inputs. Depleted δ13C values and aged radiocarbon values (as low as -47.51‰ and 1840 yrs. for Typhlatya spp.) in comparison to particulate and sediment δ13C values (lowest -32.07‰ and -28.43‰, respectively). A comparison of isotopic values between Cenote Aak Kimin and Cenote Maya Blue suggests that the trophic web of the coastal cave incorporates more photosynthetic or detrital carbon, while the inland cave, with more depleted 13C and 14C values, relies more heavily on chemoautotrophic carbon. Within both systems, however, distinct photosynthetic and chemoautotrophic levels were identified. Water quality parameters, especially dissolved oxygen and pH, support the hypothesis of bacterial activity at the halocline. Anchialine systems in the Yucatan Peninsula are threatened due to increases in tourism, development, and pollution. Quantifying and qualifying the inputs of organic carbon is vital for the management and conservation of the area’s freshwater resources.
35

The distribution of Dreissena and other benthic invertebrates in Lake Erie, 2002.

Patterson, Matthew 15 February 2012 (has links)
A lake-wide benthic survey of Lake Erie during summer 2002 indicated that Dreissena bugensis is the dominant dreissenid in Lake Erie, especially in the east basin where this species was found at every station but no Dreissena polymorpha were collected. Mean (±SD) densities of dreissenid mussels were comparable between the west (601±2,110/m2,n=49) and central (635±1,293/m2; n=41) basins, but were much greater in the east basin (9,480±11,173/m2;n=17). The greater variability in mussel density among stations and replicate samples in the central and west basins than in the east basin is attributable to the preponderance of fine-grained substrata in the nearshore, higher episodic rates of sediment deposition and periodic hypoxia in bottom waters. Although there was little change in lake-wide mean dreissenid densities between 1992 and 2002 (declining from ca. 2,636 individuals/m2 to 2,025 individuals/m2), basin-averaged shell-free dry tissue mass increased by almost four-fold from ca. 6.8±15.6 g /m2 to 24.7±71.3 g/m2 in the same interval. Up to 90% of this biomass is in the eastern basin. Other changes in 2002 include the virtual absence of mussels in the 3 to 12 mm size range, probably because of predation by round gobies, and an increase in the average size of mature mussels. The substantial changes observed between 1992 and 2002 suggest that dreissenid populations in Lake Erie were still changing rapidly in abundance and biomass, as well as species composition. The results of this survey suggest that a direct link between Dreissena spp. and hypolimnetic hypoxia in the central basin is unlikely. The dominant organisms of Lake Erie in 2002 were D. rostriformis bugensis (38%), Oligochaeta (33%), Chironomidae (18%), Sphaeriidae (2.7%), Amphipoda (2.3%) and Hydrozoa (2.2%). Mean invertebrate density was greater in the east basin, especially on hard substrates, than either the west or central basin. In the central basin, sites ≥5m supported greater numbers of organisms, than shallow (≤2m) sites in the nearshore wave zone. The greatest number of taxa were observed in the central basin, likely a resutlt of greater sampling effort there. Gammarus fasciatus comprised 80% of all amphipods, being most abundant on Dreissena-dominated hard substrates in the east basin. The introduced species, Echinogammarus ischnus occured at only 11 of 69 sites, and was the only amphipod found at 4 east basin sites, but at relatively low densities. Diporeia were not found in our survey. Hexagenia was collected at only 4 stations, all in the west basin. Chironomids were dominated by Tanytarsus and Chironomus, with Procladius, Dicrotendipes and Polypedilum also being relatively common. Oligochaete Trophic Index for 2002 indicates a similarly mesotrophic condition throughout the lake and marginal nutrient enrichment of sediments between years 1979-2002. Multivariate ordination of community data indicates clear separation of sites by year and basin as expected given the extirpation of Diporeia and the introduction of Dreissena and E. ischnus, but also reveals subtle changes in benthic structure over the last 2 decades. The benthic community of Lake Erie in 2002 does not likely represent an equilibrium condition.
36

Vliv rizika predace a komplexity prostředí na trofické interakce ve vodním prostředí / The impact of predation risk and habitat complexity on trophic interactions in aquatic habitats

KOLÁŘ, Vojtěch January 2015 (has links)
The thesis results of two laboratory experiments focusing on the impacts of predation risk, prey density and habitat complexity on predator-prey interaction strengths and predator metabolic rates, complemented by a brief review of the subject. The experimental system used in the first experiment consisted of cladoceran prey, larvae of three dragonfly species (Sympetrum sanguineum, Libellula quadrimaculata, Ischnura cf. elegans) as intermediate predators, and larvae of a large dragonfly species (Aeshna sp.) as a top predator. The second experiment of investigated how predation risk influences metabolic rates of the intermediate predators.
37

Integrated multi-trophic aquaculture with the California sea cucumber (parastichopus californicus): investigating grow-out cage design for juvenile sea cucumbers co-cultured with Pacific oysters (crassostrea gigas)

Fortune, Angela Caroline 19 October 2018 (has links)
Excess nutrients in the form of uneaten food or waste from intensive, monospecies aquaculture farms can have negative effects on the surrounding natural ecosystem, causing eutrophication and benthic habitat degradation. Biomitigative techniques such as Integrated Multi-Trophic Aquaculture (IMTA) are being investigated for their ability to reduce these negative environmental impacts. IMTA is the co-culture of multiple species from complementary trophic levels, physically orientated in such a way that excess waste nutrients from the fed component are intercepted by the extractive species. For IMTA systems to become a sustainable aquaculture design alternative, it is important to ensure that infrastructure orientation and stocking densities of the extractive species maximize the amount of excess nutrients intercepted and overall system efficiency. Previous research has shown that the majority of wastes from fed finfish are made up of large organic particulates which sink rapidly to the benthos underneath or near the fish cages and which would be available to benthic deposit-feeding species. The California sea cucumber (Parastichopus californicus) is a promising extractive species for IMTA on the west coast of Canada due to its deposit-feeding behaviour and its relatively high market price. Owing to the sea cucumber’s morphology and ability to move through restricted spaces, containment can be difficult without reducing nutrient transfer and overall IMTA system efficiency (i.e. mesh sizes needed to contain small sea cucumbers may restrict flow of farm particulates to them). The overall goal of the present work is to effectively contain juvenile sea cucumbers in such a way that maximizes benthic extraction of large-particulate nutrients within an IMTA system. / Graduate
38

FATTY ACIDS AS INDICATORS OF NUTRITIONAL HISTORY OF CHANNEL CATFISH (ICTALURUS PUNCTATUS) AND AQUATIC FOOD WEBS IN THE KASKASKIA RIVER SYSTEM OF ILLINOIS

Young, Matthew Parham 01 August 2012 (has links)
The use of fatty acid (FA) analysis has become an important tool in recent years to investigate a broad spectrum of questions in fisheries and aquatic ecology. One of these applications has been the use of FA profiles as biomarkers for indicating diet and recent feeding history of fishes and other aquatic consumers. Differences in forage FA profiles and spatial differences in food web structure within aquatic systems may lead to corresponding spatial patterns of FA profiles in consumers, thereby facilitating the potential applicability of FA biomarkers as indicators of habitat use and origin for mobile consumers such as fishes. However, little information is available regarding differences in FA profiles among habitat types in river-floodplain ecosystems and the time-scale over which fish FA profiles change when fish move between habitats that differ in the FA profiles of prey resources. The objectives of this study were to test whether the tissue FA profiles of channel catfish (Ictalurus punctatus) differed among three reaches of the lower Kaskaskia River and its floodplain lakes, to determine the time-course of tissue FA profile turnover when fish are relocated to a new habitat type, and to compare FA profiles among muscle, liver, and adipose fin tissues in channel catfish. Fatty acid profiles of channel catfish were significantly different among sites, especially between upper and lower river sites, and between river channel and oxbow lake sites, suggesting differing energy sources among habitats and river reaches in the Kaskaskia system. More specifically, there was a significant increase in the essential FAs, 18:2n-6 and 18:3n-3, in channel catfish with increasing distance downstream, which could reflect an increase in river-floodplain connectivity at downstream sites. Channel catfish transplanted from the Kaskaskia River to ponds at Southern Illinois University Carbondale showed a significant linear decrease in n-3 and medium-chain polyunsaturated FAs (MC-PUFA), and a significant linear increase in monounsaturates (MUFA) with longer residence time in a lentic environment. Liver tissue exhibited the fastest turnover rate of the three tissue types (< 2 weeks), with muscle and adipose fin tissue both displaying similar, longer turnover times (approximately 10 weeks). Results of this study support the use of FA profiles as indicators of energy sources for fishes in large river-floodplain ecosystems, including the potential for indentifying habitat-specific (river channel vs. floodplain lake) or river reach-specific energy sources. Additionally, results of this study provide a timeline for FA turnover in channel catfish tissues when fish move among habitats with distinct FA signatures, which is crucial for detecting temporal shifts in use of habitat-specific energy sources by channel catfish. Results also suggest that adipose fin tissue samples may be a less invasive alternative to muscle tissue for analysis of FA profiles in channel catfish. Improved understanding of which habitats or river reaches provide trophic support for riverine fishes through use of FA profile analysis has potentially important implications for habitat conservation and rehabilitation in river-floodplain ecosystem.
39

EFFECTS OF INVASIVE SPECIES INTRODUCTIONS ON NUTRIENT PATHWAYS IN AQUATIC FOOD WEBS

Tristano, Elizabeth 01 May 2018 (has links)
Trophic interactions within aquatic ecosystems are complex, with many different pathways facilitating transfer of energy and nutrients among trophic levels and many different mechanisms that influence energy and nutrient transfer. This is illustrated in the “top down” and “bottom up” regulatory effects on aquatic food webs, through which primary producer biomass and, therefore, herbivore and carnivore densities, are influenced by both nutrient availability (bottom up) and densities of consumers at higher trophic levels (top down). In an aquatic food web, planktivore presence can directly alter zooplankton density via consumption, while indirectly shaping phytoplankton biomass via reduced herbivore abundance and the release of nutrients due to excretion, egestion, and decomposition. Novel species introduced into an established food web may have important consequences. An invasive species may impact an invaded food web through competition, predation, alteration of nutrient cycling, or, potentially, through facilitation of native species or other invasives. For example, an invasive planktivore may shift zooplankton density or community composition, thereby facilitating phytoplankton blooms. Such a planktivore may also compete with and, potentially, replace native species. Moreover, an invasive species that reaches high densities within its invaded range may serve as an important nutrient sink as it consumes a high biomass of native species or a nutrient source via excretion or decomposition. Two such invasive species with the capacity to dramatically alter native food web dynamics are bighead (Hypophthalmichthys nobilis) and silver carp (H. molitrix; collectively, bigheaded carp). Bigheaded carp are large-bodied, planktivorous fishes that were introduced into the United States in the 1970s and have since spread throughout much of the Mississippi River and its tributaries. These species currently threaten the Great Lakes, where they may constitute a threat to native planktivores such as gizzard shad (Dorosoma cepedianum) and commercially important species such as walleye (Sander vitreus), although there remains a great deal of uncertainty surrounding their potential ecosystem impacts. Consumption of both zooplankton and phytoplankton has been observed in bigheaded carp, although their impact on primary producer biomass is not well understood. Although field observations suggest that condition and abundance of native planktivores, including gizzard shad and bigmouth buffalo (Ictiobus cyprinellus), as well as zooplankton density, have declined following the bigheaded carp invasion, there is little direct, experimental evidence of bigheaded carp food web impacts. Therefore, I sought to examine the effects of bigheaded carp on native ecosystems through a series of mesocosm experiments at the Southern Illinois University pond facility. My primary objectives were to 1) observe potential competition between bigheaded carp and the native gizzard shad, 2) evaluate effects of bigheaded carp predation on zooplankton and phytoplankton communities, 3) assess impacts of bigheaded carp decomposition on nitrogen and phosphorus availability, and 4) measure the rate at which bigheaded carp excrete nitrogen and phosphorus. In order to elucidate the impacts of bigheaded carp on gizzard shad growth and survival, zooplankton and phytoplankton densities, and nitrogen and phosphorus availability in the pelagic and benthic pools and to determine whether gizzard shad experience a diet shift in response to bigheaded carp presence, I performed two mesocosm experiments with three treatments: gizzard shad only, gizzard shad, bigheaded carp, and fishless control (Chapter 1). I predicted that bigheaded carp would reduce zooplankton densities but that gizzard shad, which are both detritivorous and planktivorous, would be unaffected due to their ability to use detritus as an alternative food source. Additionally, both predator release via zooplankton consumption and increased nutrient availability from bigheaded carp excretion would stimulate phytoplankton. I found that gizzard shad survival was reduced by bigheaded carp presence but that surviving gizzard shad did not experience a decline in growth in the bigheaded carp plus gizzard shad treatments. This may have been due to the ability of gizzard shad to consume detritus, as foreguts of sampled gizzard shad in Experiment 2 contained mostly detritus. Moreover, phytoplankton density declined in the presence of silver carp in Experiment 2, suggesting silver carp herbivory. In addition, nitrogen and phosphorus availability in either the pelagic or benthic pools did not appear to be impacted by bigheaded carp presence. After demonstrating experimentally the overall negative impact of bigheaded planktivory on native food webs, I focused my remaining two chapters on the effects of silver carp on nutrient availability. In Chapter 2, I outline a decomposition experiment testing for potential changes in pelagic and benthic nitrogen and phosphorus availability and, in turn, phytoplankton, zooplankton, and macroinvertebrate densities in response to silver carp decomposition. Although silver carp die offs have been reported throughout the Midwest, little is known about the magnitude of those die offs and their consequences for the ecosystem. In this study, silver carp decomposition did not appear to alter nutrient availability or densities of phytoplankton or invertebrates. However, in comparison to northern streams in which salmon spawning and decomposition provide an important nutrient subsidy, the mesocosms used in this study have relatively higher background nutrient concentrations. Thus, silver carp decomposition, at least at the densities studied, may have little importance to in-stream nutrient availability. Lastly, because I am interested in how bigheaded carp, particularly silver carp, alter nutrient dynamics in invaded food webs, it is necessary to calculate silver carp nitrogen and phosphorus excretion rates, as well as body nitrogen and phosphorus content (Chapter 3). Nutrient stoichiometry theory predicts a balance between the relative consumption of nutrients by an organism and the extent to which the organism retains nutrients in its tissues or excretes them. Thus, it is a useful tool in determining how an invasive species may alter nutrient availability via consumption and excretion. In Chapter 3, I describe the body and excretion N:P ratios for silver carp, which exhibit a lower body N:P ratio than excretion N:P, suggesting that these organisms may serve as a sink for phosphorus. Moreover, silver carp body excretion N:P ratios were higher than those reported for gizzard shad, suggesting that, in regions where silver carp may replace gizzard shad or lower gizzard shad population density via competition (Chapter 1), silver carp may alter nutrient cycling processes in aquatic ecosystems by shifting the overall available N:P ratio. Bigheaded carp may pose a significant threat to invaded ecosystems through their potential to compete with native species, reduce plankton densities, and alter nutrient availability. However, although bigheaded carp are expanding in range and approaching the Great Lakes, the full extent of their ecosystem impacts remain uncertain. Through my work on bigheaded carp food web impacts, particularly the influence of silver carp on native species and nutrient cycling processes, I have found that bigheaded carp have the capacity to negatively impact invaded ecosystems overall by reducing zooplankton, phytoplankton, and forage fish densities. Moreover, as bigheaded carp in particular continue to reach high densities as they expand in range, their capacity to alter relative nitrogen and phosphorus availabilities must be monitored to understand the extent of their influence. Due to their ability to disrupt top down and bottom up processes in freshwater ecosystems, bigheaded carp constitute a critical environmental issue in the Great Lakes area and throughout the Midwest and, thus, it is imperative to continue to experimentally assess how bigheaded carp interact with native species to the detriment or benefit of U.S. freshwater communities.
40

The Trophic state index and its adaptation to the lentics systems present in Cearà semiarid / O Ãndice do estado trÃfico e sua adaptaÃÃo para os sistemas lÃnticos do semiÃrido cearense

Lilian Rodolfo Barros 29 November 2013 (has links)
Para suprir a carÃncia hÃdrica, o Cearà dispÃe de uma grande rede de reservatÃrios artificiais destinados aos mais diversos usos. PorÃm, Ãguas que permanecem reservadas em aÃudes sÃo limnolÃgicamente vulnerÃveis, sendo o fenÃmeno da eutrofizaÃÃo uma das piores consequÃncias resultantes das atividades antrÃpicas desenvolvidas nas Ãreas de contribuiÃÃo desses reservatÃrios, consequÃncias essas que sÃo agravadas ainda mais em funÃÃo das caracterÃsticas naturais do semiÃrido, um ambiente marcado por baixas precipitaÃÃes pluviomÃtricas e pela sua mà distribuiÃÃo no espaÃo e no tempo. Para auxiliar no estudo trÃfico dessas Ãguas, hà muito vem sendo utilizada pelos limnÃlogos uma ferramenta destinada a classificar os recursos hÃdricos no tocante ao seu estado de trofia, o IET - Ãndice do Estado TrÃfico, desenvolvido por Carlson (1977). A pesquisa aqui desenvolvida consistiu em aprimorar o estudo da correlaÃÃo entre os parÃmetros de Clorofila a, fÃsforo total e TransparÃncia de Secchi, utilizados na composiÃÃo do IET, bem como ajustar a escala logaritmica do Ãndice, basaeando-se nas medidas mÃnimas e mÃximas de Secchi para os reservatÃrios de Ãgua do CearÃ, o que resultou em uma metodologia de classificaÃÃo trÃfica adaptada Ãs condiÃÃes dos sistemas lÃnticos inseridos no semiÃrido cearense. / To meet the water shortage, Cearà has an extensive network of artificial reservoirs intended for various uses. However, waters that remain reserved in dams present limnological vulnerability, and the phenomenon of eutrophication is one of the worst consequences of anthropic activities developed in the areas of contribution of these reservoirs, consequences that are aggravated due to the natural characteristics of semiarid, an environment marked by low rainfall and its poor distribution in space and time. To assist the trophic study of these waters, it has long been used by limnologists a tool to classify water resources in relation to their trophic state, the TSI - the Trophic State Index, developed by Carlson (1977). The research conducted here was to enhance the study of the correlation among the parameters of chlorophyll a, total phosphorus, and Secchi Transparency, used in the composition of the TSI, as well as to adjust the logarithmic scale of the index, according to Secchi's maximum and mi nimum measures to the water reservoirs of CearÃ, which resulted in a trophic classification methodology adapted to the conditions of the inserted lentic systems in Cearà semiarid

Page generated in 0.0303 seconds