Spelling suggestions: "subject:"tropical pacific ocean"" "subject:"tropical pacific ccean""
1 |
Tropical Pacific climate variability over the last 6000 years as recorded in Bainbridge Crater Lake, GalápagosThompson, Diane M., Conroy, Jessica L., Collins, Aaron, Hlohowskyj, Stephan R., Overpeck, Jonathan T., Riedinger-Whitmore, Melanie, Cole, Julia E., Bush, Mark B., Whitney, H., Corley, Timothy L., Kannan, Miriam Steinitz 08 1900 (has links)
Finely laminated sediments within Bainbridge Crater Lake, Galapagos, provide a record of El Nino-Southern Oscillation (ENSO) events over the Holocene. Despite the importance of this sediment record, hypotheses for how climate variability is preserved in the lake sediments have not been tested. Here we present results of long-term monitoring of the local climate and limnology and a revised interpretation of the sediment record. Brown-green, organic-rich, siliciclastic laminae reflect warm, wet conditions typical of El Nino events, whereas carbonate and gypsum precipitate during cool, dry La Nina events and persistent dry periods, respectively. Applying this new interpretation, we find that ENSO events of both phases were generally less frequent during the mid-Holocene (similar to 6100-4000 calendar years B.P.) relative to the last similar to 1500 calendar years. Abundant carbonate laminations between 3500 and 3000 calendar years B.P. imply that conditions in the Galapagos region were cool and dry during this period when the tropical Pacific E-W sea surface temperature (SST) gradient likely strengthened. The frequency of El Nino and La Nina events then intensified dramatically around 1750-2000 calendar years B.P., consistent with a weaker SST gradient and an increased frequency of ENSO events in other regional records. This strong interannual variability persisted until similar to 700 calendar years B.P., when ENSO-related variability at the lake decreased as the SST gradient strengthened. Persistent, dry conditions then dominated between 300 and 50 calendar years B.P. (A.D. 1650-1900, +/- similar to 100 years), whereas wetter conditions and frequent El Nino events dominated in the most recent century. Plain Language Summary Sediments accumulating at the bottom of Bainbridge Crater Lake have provided a record of Galapagos climate and the frequency of El Nino events over the past similar to 6000 years. Motivated by the importance of this lake for our understanding of climate in the tropical Pacific Ocean, we have been monitoring the link between climate, lake conditions, and the physical and chemical properties of the lake sediments since 2009. Based on this long-term monitoring, we find that the Bainbridge sediment record preserves both El Nino and La Nina events. This makes Bainbridge a particularly valuable archive of past climate, as most sediment-based records typically preserve only one or the other key phase of tropical Pacific climate.
|
2 |
Variability and trends in the tropical Pacific and the El Niño-Southern Oscillation inferred from coral and lake archivesThompson, Diane Marie January 2013 (has links)
The background state and changes associated with the El Niño-Southern Oscillation (ENSO) in the tropical Pacific Ocean influence climate patterns all over the world. Understanding how the tropical Pacific will be impacted by climate change is therefore critical to accurate regional climate projections. However, sparse historical data coverage and strong natural variability in the basin make it difficult to assess the response of the tropical Pacific to anthropogenic climate change. Further, climate models disagree regarding the response of the basin to continued anthropogenic forcing into the future. Building off of the limited instrumental record, high-resolution records from coral and lake sediment archives can be used to assess the response of the tropical Pacific to past climate changes and to compare and assess climate model projections. In the present study, I use high-resolution coral and lake records from the equatorial Pacific to assess climate model projections and the response of the coupled ocean-atmospheric climate system in the basin (ocean temperature, salinity, winds, precipitation) to natural and anthropogenic forcing. Using a simple model of how climate is recorded by corals, we compare historical climate data and climate model simulations with coral paleoclimate records to assess climate model projections and address uncertainties in the historical data, models and paleoclimate records. We demonstrate that this simple model is able to capture variability and trend observed in the coral records, and show that the both sea surface temperature and salinity contribute to the observed coral trend. However, we find major discrepancies in the observed and climate model simulated trends in the tropical Pacific that may be attributed to uncertainties in model simulated salinity. We then assess 20th-century variability and trends in SST and salinity in the central tropical Pacific using replicated coral δ¹⁸O and Sr/Ca records from the Republic of Kiribati and the central Line Islands. We find that the coral records from these sites display a warming and freshening trend superimposed on strong interannual and low-frequency variability. Further, we demonstrate an apparent strengthening of the E-W SST gradient across the dateline (between 173°E and 160°W) and a slight weakening of the N-S SST gradient due to enhanced warming along the equator and west of the dateline relative to other sites. However, we find no evidence of increased variability in the central Pacific, suggesting that there has not been an increase in central Pacific style ENSO events. Finally, we show that the salinity response to climate change may be very patchy within the basin. Using a new ~90 year coral Mn/Ca record from the central Pacific, we investigate variability and trends in tropical Pacific trade winds. First, we demonstrate a strong association between westerly wind anomalies and coral skeletal Mn/Ca, which recorded all of the major historical El Niño events of the 20th century. In this new long Mn/Ca record, we find a reduction in the amplitude and frequency of Mn/Ca pulses between 1893 and 1982, suggesting a decrease in westerly wind anomalies in the western equatorial Pacific Ocean. Finally, we use a sediment record from Bainbridge Crater Lake, Galápagos Archipelago to assess variability in the eastern tropical Pacific over the past ~6 thousand years. Based on results from long-term monitoring of the lake, we propose a new climate interpretation of the sediment record and find further evidence reduced mid-Holocene ENSO variability and a ramp up of ENSO variability starting around 1775 cal. years BP.
|
Page generated in 0.0886 seconds