• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Rearing juvenile Australian native percichthyid fish in fertilised earthen ponds

Ingram, Brett A. January 2001 (has links)
Thesis (Ph. D.)--Deakin University, 2001. / Title from PDF title page (viewed on May 16, 2005). Includes bibliographical references (p. 203-224).
2

Salinity sensitivity in early life stages of an Australian freshwater fish, Murray cod (Maccullochella peelii peelii Mitchell 1838)

Chotipuntu, Piyapong, n/a January 2003 (has links)
The Murray cod (Maccullochella peelii peelii Mitchell 1838) is Australia�s largest freshwater fish. Once highly abundant in the Murray-Darling river system, populations have drastically declined in recent decades. Many causes for this decline have been proposed, including over-fishing, habitat loss and altered river flow regimes. This study hypothesised that elevated salinities have led to selective mortality in some developmental stages, which have in turn depleted stock recruitment and adult populations. The objectives of this study were to determine the optimal, threshold, upper sublethal and lethal salinities for development of eggs, yolk-sac larvae, fry and fingerlings of M. peelii peelii. Investigation the impact of salinity on fertilisation utilised gametes of trout cod (M. macquariensis, Cuvier 1829) instead of M. peelii peelii. Studies were carried out in a controlled laboratory environment using test media prepared from commercial sea salt. The results showed that the eggs of the trout cod hatched only when fertilised and incubated in freshwater, and only larvae hatched in freshwater survived through the yolk absorption period of 12 days. Yolk utilisation efficiencies were not significantly different among the salinities of 0-0.30 g/L. There was no effect of pre- or post- fertilising processes on the salinity tolerances of yolk-sac larvae. No larvae survived at salinities higher than 0.30 g/L during the yolk utilisation period. Lethal salinity concentration in Trout cod and Murray cod larvae was exposure time dependent. The 1 day LC50 of the larvae was 1.97 and 2.33 g/L respectively, compared with the 12 day LC50 values of 0.50 and 0.35 g/L respectively. The threshold (no effect level) salinities of larvae of Trout cod and Murray cod were 0.46 and 0.34 g/L respectively at 12 days exposure. The salinity sensitivities of fry of Murray cod were moderated by increasing pH between pH 6.2 and 8.8, and stimulated by increasing temperatures from 15 to 30°C. The optimal salinity was only slightly affected by temperature. The threshold and upper sublethal salinities varied slightly depending on feeding regime. The salinity sensitivities of fingerlings of Murray cod were: LC50 = 13.7 g/L; optimal salinity from 4.6 to 5.0 g/L ; threshold salinity from 5.9 to 7.4 g/L, and upper sub-lethal salinity from 9.2 to 9.9 g/L � with the range in all cases affected by acclimation period salinity. The blood osmolality at LC50 of the fingerlings was 444 mOsmol/kgH2O or equivalent to 14.2 g/L, and the dehydration rate was 4.8%. The osmolality increased significantly in salinities higher than 9.0 and 6.0 g/L when fish were exposed for a period of 1 day and 41 days respectively. The oxygen consumption increased significantly in salinities higher than 8.0 g/L. Distortion of the notochord and corrosive skin syndrome were major symptoms describing sub-lethal effects found in the embryos, and fry and fingerlings of Murray cod respectively. Noting the risks of extrapolating directly from laboratory to field conditions, it is predicted that when salinity in natural habitats increases above 0.34 g/L a significant impact on Murray cod recruitment will result.
3

Effects of weirs on fish movements in the Murray-Darling Basin

Baumgartner, Lee Jason, n/a January 2005 (has links)
Dams and weirs are widely implicated in large-scale declines in both the range and abundance of aquatic fauna. Although many factors are involved, such declines are commonly attributed to the prevention or reduction of migration, reductions in available habitat, alteration of natural flow regimes and changes to physicochemical characteristics. In Australia, studies into the ecological effects of these impacts are limited, and have concentrated mainly on species of recreational and commercial importance. Subsequently, the adverse effects of dams and weirs, and suitable methods of mitigation, remain largely unknown for many other taxa. Therefore, the major aim of this thesis is to investigate the ecological effects of dam and weir construction on previously unstudied migratory assemblages of fish and macroinvertebrates in the Murray-Darling Basin. It is anticipated that the results of these studies will feed back into improved management strategies that help arrest the previously observed declines of aquatic fauna. Initially, fish communities were sampled, by boat electrofishing, from both reference sites and downstream of Balranald and Redbank weirs on the lower reaches of the Murrumbidgee River, Australia. Sampling was stratified over large spatial and temporal scales to gain a comprehensive understanding of species most affected by the presence of these two barriers. In general, the weirs obstructed fish migrations during summer and autumn and many species of small-bodied fish such as Australian smelt, western carp gudgeon, fly-specked hardyhead and crimson-spotted rainbowfish accumulated downstream of Balranald Weir. In addition, downstream accumulations of juveniles of larger-bodied species such as bony herring, common carp and goldfish were also detected. Although many previous studies had either documented or hypothesised that upstream migrating fish accumulate downstream of migration barriers, none attempted to quantify the size of such populations. Therefore, a simple but efficient method to estimate the size of migratory populations was assessed at the Balranald Weir site. The application of two commonly used estimation techniques yielded relatively reliable results for seven species that accumulated downstream of the weir. Population size estimates were greatest for most species during summer and autumn, where accumulations as high as 800 fish per day were detected. The largest calculated population size estimates, in addition to the greatest temporal variation, of any individual species was observed in bony herring. Given the simplicity of the technique and the relative accuracy of population estimates, it was concluded that these methods could easily be applied to other weirs where the size of migratory populations is of particular interest. A study investigating the effects of Yanco Weir on the diets of three migratory percichthyid species, Murray cod, trout cod and golden perch was also conducted. Observed spatial variation in a number of trophic processes strongly implicated Yanco Weir as a major contributor to increased competition among percichthyid species on the Murrumbidgee River. The greater relative abundance of percichthyids from downstream samples, combined with increases in dietary overlap and a greater percentage of empty stomachs, also suggested percichthyids may be significantly affecting the relative abundance of potential prey items such as freshwater prawns and Australian smelt. These significant changes in dietary composition were likely related to migratory behaviour, as these species accumulated downstream of the weir, and could be readily expected at other sites where passage is obstructed. It was suggested that the construction of suitable fish passage facilities would effectively reduce the probability of migratory fish accumulating and, subsequently, potential effects of dams and weirs on trophic processes. Since it was established that dams and weirs of the Murrumbidgee River were significantly affecting migratory fish communities, an innovative but relatively inexpensive fishway design, the Deelder fish lock (after Deelder, 1958), was constructed and assessed for wider application throughout the Murray-Darling Basin. The Deelder lock was effective at mitigating the effects of Balranald Weir by providing passage for a wide range of size classes and species of fish; but importantly, the structure enabled the passage of most species previously observed to accumulate downstream of the structure. Most significant was the ability of the fish lock to pass substantial numbers of small-bodied fish, which were previously not considered migratory, suggesting that these species should be considered when developing options to mitigate the effects of other dams and weirs throughout the Murray-Darling Basin. A significant finding of this study was the realisation that substantially more species and size classes of Australian native fish are migratory than previously thought. Subsequently, it is recommended that, when designing facilities to mitigate the effects of a dam or weir, the structure of the entire migratory community is considered when developing operating parameters. Various options for mitigating the effects of dams and weirs are discussed, but it was concluded that the construction of effective fishways would be the most appropriate means of restoring migration pathways to Australian native fish. A strategic approach for assessing and adaptively mitigating the effects of dams and weirs is presented and discussed.

Page generated in 0.1684 seconds