• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelling Biophysical Variables and Carbon Dioxide Exchange in Arctic Tundra Landscapes using High Spatial Resolution Remote Sensing Data

Atkinson, DAVID M 04 January 2013 (has links)
Vegetation community patterns and processes are indicators and integrators of climate. Recently, scientists have shown that climate change is most pronounced in circumpolar regions. Arctic ecosystems have traditionally been sequestering carbon and accumulating large carbon stores. However, given enhanced warming in the Arctic, the potential exists for intensified global climate change if these ecosystems transition from sinks to sources of atmospheric CO2. In the Mid and High Arctic, ecosystems exhibit extreme levels of spatial heterogeneity, particularly at landscape scales. High spatial-resolution (e.g., 4m) remote sensing data capture heterogeneous vegetation patterns of the Arctic landscape and have the potential to model ecosystem biophysical properties and CO2 fluxes. The following conditions are required to model arctic ecosystem processes: (i) unique spectral signatures that correspond to variations in the landscape pattern; (ii) models that transform remote sensing data into derivative values pertaining to the landscape; and (iii) field measures of the variables to calibrate and validate the models. First, this research creates an ecosystem classification scheme through ordination, clustering, and spectral-separability of ground cover data to generate ecologically meaningful and spectrally distinct image classifications. Classifications had overall accuracies between 69% - 79% and Kappa values of 0.54 - 0.69. Secondly, biophysical variable models of percent vegetation cover, aboveground biomass, and soil moisture are calibrated and validated using a k-fold cross-validation linear bivariate regression methodology. Percent vegetation cover and percent soil moisture produce the strongest and most consistent results (r2 ≥ 0.84 and 0.73) across both study sites. Finally, in situ CO2 exchange rate data, an NDVI model for each component flux, which explains between 42% and 95% of the variation at each site, is generated. Analysis of coincidence indicates that a single model for each component flux can be applied, independent of site. This research begins to fill a gap in the application of high spatial-resolution remote sensing data for modelling Arctic ecosystem biophysical variables and carbon dioxide exchange, particularly in the Canadian Arctic. The results of this research also indicate high levels of functional convergence in ecosystem-level structure and function within Arctic landscapes. / Thesis (Ph.D, Geography) -- Queen's University, 2013-01-03 22:24:20.157
2

Interactions between gray-sided voles (Clethrionomys rufocanus) and vegetation in the Fennoscandian tundra

Dahlgren, Jonas January 2006 (has links)
<p>I have, in this thesis, studied the interactions between gray-sided voles (Clethrionomys rufocanus) and tundra vegetation, on islands in, and mainland sites close to the lake Iešjávri, in northern Norway. As isolated islands are virtually free of predation, I have been able to compare plant-herbivore interactions in the presence and absence of predators. I transplanted vegetation from an island with predators and voles, to predator-free islands with and with out voles. The results reveal the existence of a terrestrial trophic cascade as voles had a severe impact on the transplanted vegetation on the predator-free islands, but only minor effects on the mainland where predators are present. Moreover, this study shows that plant defence was only a successful strategy when predators were present. Voles reduced the abundance of all available plants during winter on the predator-free islands. The results imply that cascading effects of predation are most important for well-defended plants with grazing-sensitive morphology as these plants escape herbivore impacts in the presence of predators but are vulnerable in their absence</p><p>I studied the recovery of intensively grazed vegetation by building exclosures on islands that have been heavily grazed by voles for almost a decade.This study shows that the collective biomass of vascular plants recovered completely on three years, when voles were excluded. Although most species that are dominating the ungrazed vegetation recovered rapidly in the exclosures, the vegetation did not simply return to its ungrazed state. Herbaceous plants increased and there were pronounced differences in response among evergreen dwarf-shrub species. The semi-prostrate and tannin rich crowberry (Empetrum nigrum), showed the strongest recovery of all species, while the erect lingonberry (Vaccinium vitis-idaea) only showed weak signs of recovery. Thus, growth form determined the potential of plants to recover, whereas the trade-off between defensive investments and capacity to recover was weak or absent.</p><p>I studied the interaction between gray-sided voles and their main winter food plant, bilberry (Vaccinium myrtillus) on islands in and mainland sites close to the lake Iešjávri. I compared the abundance, population structure and palatability of bilberry ramets between vole-free islands, islands with voles but no predators and mainland sites with both voles and predators. Voles decreased the abundance of bilberry on the mainland, but the effect was much stronger on predator-free islands. Bilberry was fairly tolerant to grazing as it partially compensated for the lost tissue by producing more new ramets. Moreover, a cafeteria experiment showed that voles preferred the ramets from predator-free islands, which is inconsistent with conjectures emphasizing inducible plant defenses. The vole-bilberry interaction lacks features of delayed density dependence that could explain the vole cycles. I conducted a clipping and fertilization experiment to further investigate the effects of herbivory on palatability of bilberry shoots. Fertilization decreased the concentration of condensed tannins in shoots of bilberry and voles preferred fertilized and clipped shoots. I found no indication of induced defense that could reduce the palatability of bilberry twigs in response to herbivory.</p><p>The relationships between gray-sided vole densities, levels of invertebrate herbivory and chemical quality of leaves of Northern willow (Salix glauca) were studied on islands and mainland sites with contrasting vole densities. I found a positive correlation between level of invertebrate herbivory and vole density. The number of leaves per shoot, leaf size and leaf nitrogen content were also positively correlated with vole densities, while leaf C/N ratios were negatively correlated with vole densities. The positive correlation between vole densities and level of invertebrate herbivory is probably due to a facilitative effect of voles on invertebrate herbivores, mediated through changes in plant chemistry.</p>
3

Interactions between gray-sided voles (Clethrionomys rufocanus) and vegetation in the Fennoscandian tundra

Dahlgren, Jonas January 2006 (has links)
I have, in this thesis, studied the interactions between gray-sided voles (Clethrionomys rufocanus) and tundra vegetation, on islands in, and mainland sites close to the lake Iešjávri, in northern Norway. As isolated islands are virtually free of predation, I have been able to compare plant-herbivore interactions in the presence and absence of predators. I transplanted vegetation from an island with predators and voles, to predator-free islands with and with out voles. The results reveal the existence of a terrestrial trophic cascade as voles had a severe impact on the transplanted vegetation on the predator-free islands, but only minor effects on the mainland where predators are present. Moreover, this study shows that plant defence was only a successful strategy when predators were present. Voles reduced the abundance of all available plants during winter on the predator-free islands. The results imply that cascading effects of predation are most important for well-defended plants with grazing-sensitive morphology as these plants escape herbivore impacts in the presence of predators but are vulnerable in their absence I studied the recovery of intensively grazed vegetation by building exclosures on islands that have been heavily grazed by voles for almost a decade.This study shows that the collective biomass of vascular plants recovered completely on three years, when voles were excluded. Although most species that are dominating the ungrazed vegetation recovered rapidly in the exclosures, the vegetation did not simply return to its ungrazed state. Herbaceous plants increased and there were pronounced differences in response among evergreen dwarf-shrub species. The semi-prostrate and tannin rich crowberry (Empetrum nigrum), showed the strongest recovery of all species, while the erect lingonberry (Vaccinium vitis-idaea) only showed weak signs of recovery. Thus, growth form determined the potential of plants to recover, whereas the trade-off between defensive investments and capacity to recover was weak or absent. I studied the interaction between gray-sided voles and their main winter food plant, bilberry (Vaccinium myrtillus) on islands in and mainland sites close to the lake Iešjávri. I compared the abundance, population structure and palatability of bilberry ramets between vole-free islands, islands with voles but no predators and mainland sites with both voles and predators. Voles decreased the abundance of bilberry on the mainland, but the effect was much stronger on predator-free islands. Bilberry was fairly tolerant to grazing as it partially compensated for the lost tissue by producing more new ramets. Moreover, a cafeteria experiment showed that voles preferred the ramets from predator-free islands, which is inconsistent with conjectures emphasizing inducible plant defenses. The vole-bilberry interaction lacks features of delayed density dependence that could explain the vole cycles. I conducted a clipping and fertilization experiment to further investigate the effects of herbivory on palatability of bilberry shoots. Fertilization decreased the concentration of condensed tannins in shoots of bilberry and voles preferred fertilized and clipped shoots. I found no indication of induced defense that could reduce the palatability of bilberry twigs in response to herbivory. The relationships between gray-sided vole densities, levels of invertebrate herbivory and chemical quality of leaves of Northern willow (Salix glauca) were studied on islands and mainland sites with contrasting vole densities. I found a positive correlation between level of invertebrate herbivory and vole density. The number of leaves per shoot, leaf size and leaf nitrogen content were also positively correlated with vole densities, while leaf C/N ratios were negatively correlated with vole densities. The positive correlation between vole densities and level of invertebrate herbivory is probably due to a facilitative effect of voles on invertebrate herbivores, mediated through changes in plant chemistry.
4

Long-lasting ecological legacies of reindeer on tundra vegetation

Egelkraut, Dagmar D. January 2017 (has links)
Reindeer can have strong effects on the plant species composition and functioning of tundra ecosystems, and often promote a transition towards a graminoid-dominated vegetation type. As a result, they influence many ecological processes, such as nutrient dynamics, soil biotic composition and functioning, and carbon storage. Several studies suggest that the effect of reindeer on vegetation may follow predictable patterns and could induce an alternative stable vegetation state. However, little empirical data on the long-term stability of reindeer effects on vegetation exist, as it is inherently challenging to study these ecological processes experimentally on a sufficiently long timescale. The main objective of this thesis was therefore to gain a better understanding of the long-term ecological processes following reindeer-induced vegetation shifts. In order to gain a more mechanistic insight in what initially drives this transition, I used a field-based grazing simulation experiment in which I separated defoliation, trampling, moss removal and the addition of feces. This allowed me to test the relative contribution of reindeer-related activities to initiating the shift from moss and heath- dominated tundra towards a graminoid-dominated vegetation state. Additionally, I studied the long-term ecological stability following such a vegetation shift. I did this by addressing historical milking grounds (HMGs): sites where high reindeer concentrations associated with historical traditional reindeer herding practices induced a vegetation transition from shrubs towards graminoids several centuries earlier, but which were abandoned a century ago. Studying HMGs allowed me to address: 1. The potential stability of reindeer-induced vegetation shifts; 2. The ecological mechanisms contributing to the long-term stability of these vegetation shifts; and 3. How such long-lasting vegetation changes influence soil carbon- and nutrient cycling. I found that trampling by reindeer is an important mechanism by which reindeer cause vegetation change. Addressing HMGs further revealed that this vegetation change can be hightly persistent, as the studied HMGs showed only a low encroachment at the surrounding borders in the last 50 years. The vegetation in the core areas of all studied HMGs had remained strikingly stable, and were hardly invaded by surrounding shrubs. Interestingly, soil nutrient concentrations and microbial activities were still different from the surrounding area as well, and even comparable to actively grazed areas. Even after many centuries of changed vegetation composition and soil processes, there was no difference in total carbon sequestration. This suggests that the environmental conditions for microbial decomposition were more important than vegetation composition for the soil carbon stocks, in our study site. After studying the contemporary habitat use of HMGs by reindeer and other herbivores, investigating the potential plant-soil feedbacks mechanisms and detailed soil analyses, I concluded that several ecological mechanisms contribute to the long-term stability of HMGs: first, the altered soil biotic and abiotic conditions appear to have a stronger advantage for HMG vegetation than for the surrounding tundra vegetation. Furthermore, I found a clear browsing preference of small rodents on single shrubs proliferating in HMGs, causing a strong limitation on shrub expansion. Moreover, the dense established sward of graminoids likely poses a strong direct competition for space and nutrients, hindering seedling establishment. Finally, I conclude that HMGs are highly stable on relevant ecological timescales, and propose how the concepts of historical contingency and ASS can be applied to understand stability of these reindeer-induced vegetation transitions.

Page generated in 0.122 seconds