• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Experiments and Modelling of Automotive Turbochargers under Unsteady Conditions

García-Cuevas González, Luis Miguel 30 March 2015 (has links)
The current global scenario, in which an ever increasing population with an ever growing transportation needs is coupled with a reduction in the fossil fuel production and increasing human-made pollution derived problems, leads automotive engine manufacturers to constant struggles for fuel consumption and emission reductions while keeping engine performance. One-dimensional simulation codes have become a key tool towards these objectives, but require continued accuracy refinements. Phenomena that were previously thought of a limited importance and could be extremely easily modelled now require the development of new methods to be accounted for. Among these phenomena are the turbocharger mechanical losses and the turbine behaviour under highly pulsating boundary conditions. This work is focused on the improvement of current one-dimensional models, for both mechanical losses prediction and high frequency pulsating flow turbine performance. After reviewing the state-of-the-art in experimental measurement and fast simulation of automotive turbochargers, this work presents first a experimental study of several turbochargers working under both steady-state and unsteady operating conditions, focusing on the general performance of the turbine and the losses in the power transmission between it and the compressor, even including internal pressure measurements in one of the tested units. All the measurements are corrected due to heat transfer, getting the purely adiabatic behaviour. Furthermore, a CFD simulation campaign of a radial turbine has been performed, thus obtaining a detailed description of its internal behaviour under highly pulsating flow. In the light of both the experimental and CFD-simulated results, a quasi-steady mechanical losses and a quasi-bidimensional turbine model have been developed. Both models have been validated using all the experimental and simulated data, proving a prediction accuracy improvements from the results of previous methods. The mechanical losses model offers a clear advantage over the usual practice of using a constant mechanical efficiency value for correcting the manufacturer’s turbocharger map, whereas the turbine model has demonstrated potential for turbine map extrapolation and has improved the instantaneous results over classic onedimensional turbine volute models for frequencies higher than 1000 Hz. Both models have been developed trying to keep a reduced computational cost, ensuring to exploit the specific characteristics of the processors where they are going to be run. / García-Cuevas González, LM. (2014). Experiments and Modelling of Automotive Turbochargers under Unsteady Conditions [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/48458
2

Numerical Study of a Radial Turbine of Variable Geometry at Off-Design Conditions Reaching Choked Flow

Echavarría Olaya, Juan David 04 September 2023 (has links)
[ES] En los turbocompresores con turbina de geometría variable (VGT por sus siglas en inglés) los vanos del estator se mueven a una posición cerrada para generar una contrapresión durante el modo de frenado del motor. De este modo, se generan ondas de choque en el estator. Además, en otras aplicaciones donde se utilizan turbinas radiales como en ciclos reversos de Brayton para refrigeración, ciclos orgánicos Rankine, y en las turbinas para la unidad de potencia auxiliar, dependiendo de las condiciones de operación, pueden aparecer condiciones sónicas y ondas de choque. El presente trabajo se centra en el estudio del comportamiento del flujo a través de una turbina de geometría variable de un turbocompresor comercial en condiciones fuera de diseño alcanzando condiciones de choque. Se ha realizado un análisis detallado del patrón de flujo dentro de la turbine usando simulaciones CFD, identificando y cuantificando los fenómenos más importantes bajo diferentes condiciones de operación. Se han llevado a cabo simulaciones estacionarias usando Reynolds Averaged Navier Stokes (RANS) y no estacionarias (unsteady RANS) para obtener las características del flujo en el estator y en el rotor, además de obtener el mapa de la turbina. Los resultados CFD muestran que la región del dominio computacional donde aparecen las condiciones sónicas depende de la posición de los vanos del estator y la relación de presiones. Cuando los vanos del estator están en una posición cerrada (10% VGT), el fluido se acelera y, dependiendo de la relación de presiones, la presión estática en el lado de succión disminuye hasta cierto punto donde un incremento repentino revela la presencia de una onda de choque, la cual se expande por el espacio sin vanos. La intensidad de la onda de choque bajo la relación de presiones más altas varia con la velocidad de giro. Para analizar la interacción entre el rotor y el estator se llevaron a cabo simulaciones numéricas con los vanos del estator en una posición cerrada, 10% VGT, y en una posición más abierta, 30% VGT. El número de choques que una partícula del fluido experimenta aguas arriba del rotor está correlacionado con las pérdidas por choque del fluido. Cerca de los vanos del estator, las pérdidas de presión son altas, hacia el centro del espacio sin vanos las pérdidas disminuyen y cerca del rotor empiezan a incrementar. La interacción entre el rotor y el estator crea ondas de choque cuya intensidad depende de la posición del borde de ataque del rotor y de la velocidad de giro. A la velocidad de giro más alta, ocurren fluctuaciones en la carga cerca del borde de ataque, las cuales pueden comprometer la integridad de la pala. Cuando la turbina tiene los vanos del estator abiertos (80% VGT) y opera a la relación de presión más alta seleccionada, las condiciones de choque aparecen en el plano del borde de fuga del rotor. Además, el desarrollo del área chocada depende de la velocidad de giro y de las fugas en la punta del álabe. Así, se investigó los efectos de las fugas en la punta del alabe sobre el flujo principal bajo condiciones sónicas disminuyendo e incrementando el intersticio entre la punta del álabe y la carcasa hasta un 50% en base a la geometría dada por el fabricante. El flujo a través de este espacio se acelera para posteriormente mezclarse con el flujo principal y generar un vórtice. Los efectos del vórtice sobre el flujo en el plano ubicado en el borde de fuga del rotor cuando el intersticio varía son más significativos a altas velocidades que a bajas velocidades. El vórtice permanece más cerca del lado de succión a altas velocidades generando una región subsónica que incrementa con la altura del intersticio. Las fugas en la punta del álabe no afectan al flujo principal cerca del cubo cuando la turbina opera a altas y bajas velocidades. / [CA] En turbocompressors amb turbina de geometria variable (VGT per les seues sigles en anglès), les paletes de l'estàtor es mouen a una posició tancada per generar una contrapressió durant el mode de frenada del motor. D'aquesta forma, es generen unes ones de xoc en l'estàtor. A més, en altres aplicacions on s'utilitzen turbines radials com els cicles inversos de Brayton per a refrigeració, cicles orgànics de Rankine o en turbines per a la unitat de potencia auxiliar, depenent de les condicions d'operació poden aparéixer condicions sòniques i d'ones de xoc. El present treball es centra en l'estudi del comportament del flux en una turbina radial de geometria variable d'un turbocompressor comercial en condicions fora de disseny, arribant a condicions de xoc. S'ha realitzat un anàlisi detallat del patró de flux dins d'aquestes turbines utilitzant simulacions CFD, identificant i quantificant els fenòmens més importants a diferents condicions d'operació. S'han realitzat simulacions estacionàries utilitzant Reynolds Averaged Navier Stokes (RANS) i no estacionàries (Unsteady-RANS) per a obtenir les característiques del flux en l'estàtor i en el rotor, a més d'obtenir el mapa de la turbina. Els resultats CFD mostren que la regió del domini computacional on apareixen les condicions sòniques depenen de la posició de les paletes de l'estàtor i de la relació de pressions. Quan les paletes de l'estàtor estan en una posició tancada (10% VGT), el flux s'accelera i, depenent de la relació de pressions, la pressió estàtica en el costat de succió disminueix fins a cert punt on un increment brusc denota la presència d'una ona de xoc que s'expandix per l'espai sense paletes. L'intensitat de la ona de xoc a relacions de pressions elevades varia amb la velocitat de rotació. Per analitzar l'interacció entre rotor i estàtor es van realitzar simulacions numèriques amb les paletes de l'estàtor en una posició tancada, 10% VGT, i en una posició més oberta, 30% VGT. El nombre de xocs que una partícula del fluid experimenta aigües amunt del rotor està correlacionat amb les pèrdues per xoc del fluid. Prop de les paletes de l'estàtor, les pèrdues de pressión són elevades, cap al centre de l'espai sense paletes les pèrdues disminueixen i prop del rotor comencen a incrementarse. L'interacción entre rotor i estàtor crea ones de xoc amb una intensitat que depèn de la posició de la vora d'atac del rotor i de la velocitat de rotació. A la velocitat de rotació més elevada, prop de de la vora d'atac ocorren fluctuacions en la càrrega que poden comprometre la integritat de la pala. Quan la turbina té les paletes de l'estàtor obertes (80% VGT) i opera a la relació de pressió més elevada de les seleccionades, les condicions de xoc apareixen en el pla de la vora de fuga del rotor. A més, el desenvolupament de l'àrea xocada depèn de la velocitat de rotació i de les fugues en la punta de les paletes. Així, s'ha investigat els efectes de les fugues en la punta de les paletes sobre el flux principal sota condicions sòniques, disminuint i incrementant l'interstici entre la punta de la paleta i la carcasa fins un 50\% en base a la geometria donada pel fabricant. El flux en aquest espai s'accelera per a posteriorment mesclar-se amb el flux principal i generar un vòrtex. Els efectes del vòrtex sobre el flux en el pla ubicat a la vora de fuga del rotor quan l'interstici varia són més significatives a velocitats altes que a velocitats baixes. El vòrtex roman més prop del costat de succió a velocitats elevades generant una regió subsònica que incrementa amb l'altura de l'interstici. Les fugues en la punta de les paletes no afecten al flux principal prop del cub quan la turbina opera tant a altes com baixes velocitats. / [EN] In turbochargers with variable geometry turbine (VGT), the stator vanes move to a closed position to drive high exhaust back pressure during the engine braking mode. Thus, shock waves are generated at the stator. Furthermore, depending on the operational conditions in the use of radial turbines in other applications like reverse Brayton cycle for refrigeration, Organic Rankine Cycles, and gas turbine auxiliary power unit (GTAPU), sonic flow and shock waves can appear. The current work focuses on studying the flow behavior of a commercial turbocharger turbine of variable geometry at off-design conditions reaching choked flow. A detailed examination of the flow patterns within the turbine has been carried out using CFD simulations, identifying and quantifying the most important phenomena under different operational points. Reynolds Averaged Navier Stokes (RANS) and unsteady RANS simulations have been performed to obtain the flow structures in stator and rotor as well as the turbine map. The CFD results show that the region of the computational domain where the sonic conditions appear depends on the stator vanes position and the pressure ratio. When the stator vanes are in the closed position (10% VGT) the flow through the stator accelerates and, depending on pressure ratio, the static pressure on the suction side decreases until a certain point where a sudden increase reveals the presence of a shock wave that expands through the vaneless space. The intensity of the shock wave at higher pressure ratio varies with the rotational speed. To analyze the rotor-stator interaction, numerical simulations were carried out with the stator vanes at the closed position, 10% VGT, and at wider position, 30% VGT. The number of shocks a fluid particle experiences upstream of the rotor is correlated with the fluid shock losses. Close to the stator vanes, the pressure losses are high; toward the center of the vaneless space, they start to decrease, and close to the rotor they start to increase. The rotor-stator interaction creates shock waves, whose intensity depends on the position of the rotor leading edge and the blade speed. At higher rotational speed, load fluctuation occurs close to the leading edge, which may compromise the blade's integrity. When the turbine has the stator vanes open (80% VGT) and operates at the selected higher pressure ratio, the choking condition appears in a plane at the rotor trailing edge. Furthermore, the development of the choked area depends on the rotational speed and tip leakage. Thus, the effect of the tip leakage flow on the main flow under sonic conditions was investigated decreasing and increasing the tip gap up to 50% of the original geometry given by the manufacturer. The flow through the gap accelerates and then mixes with the main flow, generating a vortex. The effects of the vortex on the flow at the rotor trailing edge plane when the tip gap varies are more significant at higher speed than at lower speed. The vortex stays closer to the tip suction side at higher speed, generating a subsonic region that increases with the tip gap height. At higher and lower rotational speeds, the tip leakage flow does not affect the main flow close to the hub. / I would like to acknowledge the financial support received through the "Subprograma de Formación de Profesorado Universitario (FPU)". Ministerio de Universidades. FPU18/02628 and by the "FPI Subprograma 2". Universitat Politècnica de València. PAID-10-18. / Echavarría Olaya, JD. (2023). Numerical Study of a Radial Turbine of Variable Geometry at Off-Design Conditions Reaching Choked Flow [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/196861

Page generated in 0.0701 seconds