• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 11
  • 5
  • Tagged with
  • 34
  • 18
  • 12
  • 11
  • 11
  • 8
  • 8
  • 7
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Experimental and analytical investigation into the two stage turbocharging systems for diesel engines

Zhang, Qingning January 2016 (has links)
The work described in this thesis aims to conduct a systematic study of the two stage turbocharging system to improve the Diesel engine transient performance as well as NOX and CO2 emissions with a focus on the improved turbocharger matching and the control of the charging system, through the use of high fidelity engine models backed by experimental results. To perform the analytical study, commercial 1D simulation software has been used in the process of system characterisation and control strategy design. To validate the analytical results, a two stage turbocharging system was installed on a production diesel engine and tested on a transient engine test bench. The test results were then used to further calibrate the 1D engine/turbocharger model. Several other technologies were also investigated in simulation to explore their potential to further improve the system. Unlike most studies in the literature, this project focused on the system benefit of the engine and turbochargers, instead of conducting optimisation solely at the component level. The engine global parameters, such as the engine fuel consumption, emission levels and the transient response were the main parameters to be considered and were also best suited to the strengths of the 1D simulation method. The interactive use of both the analytical and experimental methods was also a strong point of this study. A novel control strategy for the system was proposed and demonstrated in the simulation. Experiments confirmed the validity of this control strategy and provided data for further model calibration. The comparison of the test results of the baseline engine to those obtained with the two stage turbocharged engine system verified the benefits of the novel turbocharging arrangement and control scheme. Transient response (T1090) was improved, with a 50% faster torque rise at 1000 rpm; the fuel consumption over the NEDC was 4% lower and NOx emissions over the NEDC were 28% lower. In the meantime, the study also revealed shortcomings of the system, such as the lack of EGR control at low speed, low load condition and a mid-speed fuel consumption deterioration of 13% on average at 3000 rpm due to excessive back pressure. With a novel 1D model corroborated using test results, exploratory simulation was done to rectify the aforementioned shortcomings and to further improve the system. Simulation results showed that by implementing VGT and ball bearing technology in the high pressure stage of the two stage system, the EGR controllability at low speed was regained and the excessive back pressure at high speed was improved. Consequently, the fuel consumption was only increased by 1.3% compared to the baseline NEDC operation and the transient response was on par with the original two stage system, with only 0.05s slower in torque rise at 1000 rpm, and still 48% faster than the baseline VGT system. Furthermore, the NOx emission can be expected to be greatly improved in the upcoming more intensive drive cycles compared to the NEDC cycle, with simulation showing NEDC NOX emissions dropped by 1%, comparing to a substantial reduction of 11% in WLTC.
2

An experimental and theoretical investigation of the design of single entry radial inflow turbocharger turbine volutes

Noor, Alias Bin Mohd January 1990 (has links)
No description available.
3

Turbo-discharging the internal combustion engine

Baker, Alan T. January 2014 (has links)
This thesis reports original research on a novel internal combustion (IC) engine charge air system concept called Turbo-Discharging. Turbo-Discharging depressurises the IC engine exhaust system so that the engine gas exchange pumping work is reduced, thereby reducing fuel consumption and CO2 emissions. There is growing concern regarding the human impact on the climate, part of which is attributable to motor vehicles and transport. Recent legislation has led manufacturers to improve the fuel economy and thus reduce the quantity of CO2 generated by their vehicles. As this legislation becomes more stringent manufacturers are looking to new and developing technologies to help further improve the fuel conversion efficiency of their vehicles. Turbo-Discharging is such a technology which benefits from the fact it uses commonly available engine components in a novel system arrangement. Thermodynamic and one-dimensional gas dynamics models and experimental testing on a 1.4 litre four cylinder four-stroke spark ignition gasoline passenger car engine have shown Turbo-Discharging to be an engine fuel conversion efficiency and performance enhancing technology. This is due to the reduction in pumping work through decreased exhaust system pressure, and the improved gas exchange process resulting in reduced residual gas fraction. Due to these benefits, engine fuel conversion efficiency improvements of up to 4% have been measured and increased fuel conversion efficiency can be realised over the majority of the engine operating speed and load map. This investigation also identified a measured improvement in engine torque over the whole engine speed range with a peak increase of 12%. Modelling studies identified that both fuel conversion efficiency and torque can be improved further by optimisation of the Turbo-Discharging system hardware beyond the limitations of the experimental engine test. The model predicted brake specific fuel consumption improvements of up to 16% at peak engine load compared to the engine in naturally aspirated form, and this increased to up to 24% when constraints imposed on the experimental engine test were removed.
4

Accuracy of turbocharged SI-engine simulations

Westin, Fredrik January 2002 (has links)
<p>This licentiate thesis deals mainly with modelling ofturbocharged SIengines. A model of a 4-cylinder engine was runin both steady state and transient conditions and the resultswere compared to measured data. Large differences betweenmeasurements and simulations were detected and the reasons forthis discrepancy were investigated. The investigation showedthat it was the turbocharger turbine model that performed in anon-optimal way. To cope with this, the turbine model containedparameters, which could be adjusted so that the model resultsmatched measured data. However, it was absolutely necessary tohave measured data to match against. It was thus concluded thatthe predictivity of the software tool was too poor to try topredict the performance of various boosting systems. Thereforemeans of improving the modelling procedure were investigated.To enable such an investigation a technique was developed tomeasure the instantaneous power output from, and efficiency of,the turbine when the turbocharger was used on the engine.</p><p>The project’s initial aim was to predict, throughsimulations, the best way to boost a downsized SI-engine with avery high boost-pressure demand. The first simulation run on astandard turbocharged engine showed that this could not be donewith any high accuracy. However, a literature study was madethat presents various different boosting techniques that canproduce higher boost pressure in a larger flow-range than asingle turbocharger, and in addition, with smallerboost-pressure lag.</p><p><b>Key words:</b>boosting, turbocharging, supercharging,modelling, simulation, turbine, pulsating flow, unsteadyperformance, SI-engine, measurement accuracy</p>
5

Transient optimisation of a diesel engine

Wijetunge, Roshan January 2001 (has links)
No description available.
6

Accuracy of turbocharged SI-engine simulations

Westin, Fredrik January 2002 (has links)
This licentiate thesis deals mainly with modelling ofturbocharged SIengines. A model of a 4-cylinder engine was runin both steady state and transient conditions and the resultswere compared to measured data. Large differences betweenmeasurements and simulations were detected and the reasons forthis discrepancy were investigated. The investigation showedthat it was the turbocharger turbine model that performed in anon-optimal way. To cope with this, the turbine model containedparameters, which could be adjusted so that the model resultsmatched measured data. However, it was absolutely necessary tohave measured data to match against. It was thus concluded thatthe predictivity of the software tool was too poor to try topredict the performance of various boosting systems. Thereforemeans of improving the modelling procedure were investigated.To enable such an investigation a technique was developed tomeasure the instantaneous power output from, and efficiency of,the turbine when the turbocharger was used on the engine. The project’s initial aim was to predict, throughsimulations, the best way to boost a downsized SI-engine with avery high boost-pressure demand. The first simulation run on astandard turbocharged engine showed that this could not be donewith any high accuracy. However, a literature study was madethat presents various different boosting techniques that canproduce higher boost pressure in a larger flow-range than asingle turbocharger, and in addition, with smallerboost-pressure lag. <b>Key words:</b>boosting, turbocharging, supercharging,modelling, simulation, turbine, pulsating flow, unsteadyperformance, SI-engine, measurement accuracy / NR 20140805
7

Evaluation des termes temporels permettant de décrire les transitoires rapides d’un turbocompresseur de suralimentation automobile / Description and evaluation of fast transient effects in turbochargers for automobile application.

Cappelaere, Nicolas 14 December 2016 (has links)
Ce document propose une démarche expérimentale permettant de reproduire les écoulements pulsés, que l’on retrouve dans le collecteur d’échappement d’un moteur, sur les caractéristiques des performances d’un turbocompresseur de suralimentation. Une étude comparative des différents moyens d’essais existants, permettant de reproduire les effets pulsés en entrée de la turbine d’un turbocompresseur, est présentée. Elle permet d’évaluer les avantages et les inconvénients de chacun pour définir un cahier des charges de fonctionnalité d’un nouveau banc d’essai Les travaux permettant la mise en oeuvre de l’instrumentation spécifique propre à répondre aux besoins de développement de ce moyen d’essai sont exposés. Le principal objectif est pouvoir obtenir une mesure du débit instantané ainsi que celle de la température instantanée. Les premiers résultats obtenus avec les conditions d’essais utilisant le système mis en place pour simuler le régime pulsé, complétés par une analyse des différentes procédures d’exploitation, montrent qu’il est possible de restituer des essais cohérents en régime d’écoulement stationnaire et pulsé afin de les comparer. Les possibilités d’exploiter d’autres résultats sont évoquées, compte tenu de la flexibilité du banc ; il est en effet possible faire varier de façon indépendantes plusieurs types de conditions d’écoulements pulsés pour simuler, par exemple, différents points de charge d’un moteur donné ou de simuler différentes valeurs du nombre de cylindres. / The document presents the results of an experimental work devoted to create pulse flows, independently from a real car engine, equivalent to the exhaust pipe engine flow characteristics, on the overall performances of a turbocharger. A comparative analysis on existing test stands that are able to perform such flow conditions is presented. This allows defining a new test stand which specific conditions that are not already covered by previous test stands. All steps concerning the ability to set up of the new test stand and more specifically instrumentation development and acquisition systems are detailed. First set of results obtained with the test stand, in pulse conditions, are presented with some analysis on performance comparisons between steady and pulse inlet conditions at the turbocharger inlet section. The new pulse test stand allows performing more flexible variations of inlet flow unsteady conditions, different thrust load values and number of motor cylinders as well
8

Úprava atmosférického motoru na motor přeplňovaný / Modification of Naturally Aspirated Engine to Turbocharged Engine

Fajkus, Martin January 2011 (has links)
Aim of this diploma thesis is the modification of naturally aspirated engine for Formula Student competition to turbocharged version. Modification which were made are based on the issue knowledge and calculations. The input data were obtained from 3D scanning and measurements, at the school laboratories. All 3D models were created in Pro / Engineer. Input data for the computional analysis was developed in Lotus Engine Simulation. Computational analysis was performed in ANSYS by finite element method. Calculations had to simulate a piston behavior at the critical situations where the engine is under the maxiumum load.
9

Zvýšení pružnosti zážehového závodního motoru přeplňováním / Increasing SI Racing Engine Performance by Turbocharging

Dolák, Jindřich January 2011 (has links)
Aim of this diploma thesis is the turbocharger design calculation for single cylinder SI engine for Formula Student. This thesis includes a mathematical model of the engine, which is created in the Lotus Engine Simulation. This model applies for tuning the regulation of turbocharger charging pressure. Lotus uses the turbine waste gate valve for this regulation. The results of the simulation are the charging pressure,lengths of the intake manifold and etc. These parameters ensure the optimal engine qualities. The knowlege and results of the simulations are summarized at the conclusion.
10

Simulation of turbocharged SI-engines - with focus on the turbine

Westin, Fredrik January 2005 (has links)
<p>The aim is to share experience gained when simulating (and doing measurements on) the turbocharged SI-engine as well as describing the limits of current state of the technology. In addition an overview of current boosting systems is provided.</p><p>The target readers of this text are engineers employed in the engine industry as well as academia who will get in contact, or is experienced, with 1D engine performance simulation and/or boosting systems. Therefore the text requires general knowledge about engines.</p><p>The papers included in the thesis are, in reverse chronological order:</p><p>[8] SAE 2005-XX-XXX Calculation accuracy of pulsating flow through the turbine of SI-engine turbochargers - Part 2 Measurements, simulation correlations and conclusions Westin & Ångström</p><p>To be submitted to the 2005 SAE Powertrain and Fluid Systems Conference in San Antonio</p><p>[7] SAE 2005-01-2113 Optimization of Turbocharged Engines’ Transient Response with Application on a Formula SAE / Student engine Westin & Ångström</p><p>Approved for publication at the 2005 SAE Spring Fuels and Lubricants Meeting in Rio de Janeiro</p><p>[6] SAE 2005-01-0222 Calculation accuracy of pulsating flow through the turbine of SI-engine turbochargers - Part 1 Calculations for choice of turbines with different flow characteristics Westin & Ångström</p><p>Published at the 2005 SAE World Congress in Detroit April 11-14, 2005</p><p>[5] SAE 2004-01-0996 Heat Losses from the Turbine of a Turbocharged SI-Engine – Measurements and Simulation Westin, Rosenqvist & Ångström</p><p>Presented at the 2004 SAE World Congress in Detroit March 8-11, 2004</p><p>[4] SAE 2003-01-3124 Simulation of a turbocharged SI-engine with two software and comparison with measured data Westin & Ångström</p><p>Presented at the 2003 SAE Powertrain and Fluid Systems Conference in Pittsburgh</p><p>[3] SIA C06 Correlation between engine simulations and measured data - experiences gained with 1D-simulations of turbocharged SI-engines Westin, Elmqvist & Ångström</p><p>Presented at the SIA International Congress SIMULATION, as essential tool for risk management in industrial product development in Poissy, Paris September 17-18 2003</p><p>[2] IMechE C602/029/2002 A method of investigating the on-engine turbine efficiency combining experiments and modelling Westin & Ångström</p><p>Presented at the 7th International Conference on Turbochargers and Turbocharging in London 14-15 May, 2002</p><p>[1] SAE 2000-01-2840 The Influence of Residual Gases on Knock in Turbocharged SI-Engines Westin, Grandin & Ångström</p><p>Presented at the SAE International Fall Fuels and Lubricants Meeting in Baltimore October 16-19, 2000</p><p>The first step in the investigation about the simulation accuracy was to model the engine as accurately as possible and to correlate it against as accurate measurements as possible. That work is covered in the chapters 3 and 5 and in paper no. 3 in the list above. The scientific contribution here is to isolate the main inaccuracy to the simulation of turbine efficiency.</p><p>In order to have anything to compare the simulated turbine efficiency against, a method was developed that enables calculation of the CA-resolved on-engine turbine efficiency from measured data, with a little support from a few simulated properties. That work was published in papers 2 and 8 and is the main scope of chapter 6 in the thesis. The scientific contributions here are several:</p><p>· The application on a running SI-engine is a first</p><p>· It was proven that CA-resolution is absolutely necessary in order to have a physically and mathematically valid expression for the turbine efficiency. A new definition of the time-varying efficiency is developed.</p><p>· It tests an approach to cover possible mass accumulation in the turbine housing</p><p>· It reveals that the common method for incorporating bearing losses, a constant mechanical efficiency, is too crude.</p><p>The next step was to investigate if different commercial codes differ in the results, even though they use equal theoretical foundation. That work is presented in chapter 4, which corresponds to paper 4. This work has given useful input to the industry in the process of choosing simulation tools.</p><p>The next theory to test was if heat losses were a major reason for the simulation accuracy. The scientific contribution in this part of the work was a model for the heat transport within the turbocharger that was developed, calibrated and incorporated in the simulations. It was concluded that heat losses only contributed to a minor part of the inaccuracy, but that is was a major reason for a common simulation error of the turbine outlet temperature, which is very important when trying to simulate catalyst light off. This work was published in paper 5 and is covered in chapter 7.</p><p>Chapter 8, and papers 6 and 8, covers the last investigation of this work. It is a broad study where the impact of design changes of both manifold at turbines on both simulation accuracy as well as engine performance. The scientific contribution here is that the common theory that the simulation inaccuracy is proportional to the pulsation amplitude of the flow is non-valid. It was shown that the reaction was of minor importance for the efficiency of the turbine in the pulsating engine environment. Furthermore it presents a method to calculate internal flow properties in the turbine, by use of a steady-flow design software in a quasi-steady procedure. Of more direct use for the industry is important information of how to design the manifolds as well as it sheds more light on how the turbine works under unsteady flow, for instance that the throat area is the single most important property of the turbine and that the system has a far larger sensitivity to this parameter than to any other design parameters of the turbine. Furthermore it was proven that the variation among individual turbines is of minor importance, and that the simulation error was of similar magnitude for different turbine manufacturers.</p><p>Paper 7, and chapter 9, cover a simulation exercise where the transient performance of turbocharged engines is optimised with help from factorials. It sorts out the relative importance of several design parameters of turbocharged engines and gives the industry important information of where to put the majority of the work in order to maximize the efficiency in the optimisation process.</p><p>Overall, the work presented in this thesis has established a method for calibration of models to measured data in a sequence that makes the process efficient and accurate. It has been shown that use of controllers in this process can save time and effort tenfold or more.</p><p>When designing turbocharged engines the residual gas is a very important factor. It affects both knock sensitivity and the volumetric efficiency. The flow in the cylinder is in its nature of more dimensions than one and is therefore not physically modelled in 1D codes. It is modelled through models of perfect mixing or perfect displacement, or at a certain mix between them. Before the actual project started, the amount of residual gases in an engine was measured and it’s influence on knock was established and quantified. This was the scope of paper 1. This information has been useful when interpreting the model results throughout the entire work.</p>

Page generated in 0.0701 seconds