• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Large Eddy Simulations of Complex Flows in IC-Engine's Exhaust Manifold and Turbine

Fjällman, Johan January 2014 (has links)
The thesis deals with the flow in pipe bends and radial turbines geometries that are commonly found in an Internal Combustion Engine (ICE). The development phase of internal combustion engines relies more and more on simulations as an important complement to experiments. This is partly because of the reduction in development cost and the shortening of the development time. This is one of the reasons for the need of more accurate and predictive simulations. By using more complex computational methods the accuracy and predictive capabilities are increased. The disadvantage of using more sophisticated tools is that the computational time is increasing, making such tools less attractive for standard design purposes. Hence, one of the goals of the work has been to contribute to assess and improve the predictive capability of the simpler methods used by the industry. By comparing results from experiments, Reynolds Averaged Navier-Stokes (RANS) computations, and Large Eddy Simulations (LES) the accuracy of the different computational methods can be established. The advantages of using LES over RANS for the flows under consideration stems from the unsteadiness of the flow in the engine manifold. When such unsteadiness overlaps the natural turbulence the model lacks a rational foundation. The thesis considers the effect of the cyclic flow on the chosen numerical models. The LES calculations have proven to be able to predict the mean field and the fluctuations very well when compared to the experimental data. Also the effects of pulsatile exhaust flow on the performance of the turbine of a turbocharging system is assessed. Both steady and pulsating inlet conditions are considered for the turbine case, where the latter is a more realistic representation of the real flow situation inside the exhaust manifold and turbine. The results have been analysed using different methods: single point Fast Fourier Transforms (FFT), probe line means and statistics, area and volume based Proper Orthogonal Decomposition (POD) and Dynamic Mode Decomposition (DMD). / Denna avhandling behandlar flödet i rörkrökar och radiella turbiner som vanligtvis återfinns i en förbränningsmotor. Utvecklingsfasen av förbränningsmotorer bygger mer och mer på att simuleringar är ett viktigt komplement till experiment. Detta beror delvis på minskade utvecklingskostnader men även på kortare utevklningstider. Detta är en av anledningarna till att man behöver mer exakta och prediktiva simuleringsmetoder. Genom att använda mer komplexa beräkningsmetoder så kan både nogrannheten och prediktiviteten öka. Nackdelen med att använda mer sofistikerade metoder är att beräkningstiden ökar, vilket medför att sådana verktyg är mindre attraktiva för standardiserade design ändamål. Härav, ett av målen med projektet har varit att bidra med att bedöma och förbättra de enklare metodernas prediktionsförmåga som används utav industrin. Genom att jämföra resultat från experiment, Reynolds Averaged Navier-Stokes (RANS) och Large Eddy Simulations (LES) så kan nogrannheten hos de olika simuleringsmetoderna fastställas. Fördelarna med att använda LES istället för RANS när det gäller de undersökta flödena kommer ifrån det instationära flödet i grenröret. När denna instationäritet överlappar den naturligt förekommande turbulensen så saknar modellen en rationell grund. Denna avhandling behandlar effekten av de cykliska flöderna på de valda numeriska modellerna. LES beräkningarna har bevisats kunna förutsäga medelfältet och fluktuationerna väldigt väl när man jämför med experimentell data. Effekterna som den pulserande avgasströmning har på turboladdarens turbin prestanda har också kunnat fastställas. Både konstant och pulserande inlopps randvillkor har används för turbinfallet, där det senare är ett mer realistiskt representation av den riktiga strömningsbilden innuti avgasgrenröret och turbinen. Resultaten har analyserats på flera olika sätt: snabba Fourier transformer (FFT) i enskilda punkter, medelvärden och statistik på problinjer, area och volumsbaserade metoder så som Proper Orthogonal Decomposition (POD) samt Dynamic Mode Decomposition (DMD). / <p>QC 20140919</p>
2

On-Engine Turbocharger Performance Considering Heat Transfer

Aghaali, Habib January 2012 (has links)
Heat transfer plays an important role in affecting an on-engine turbocharger performance. However, it is normally not taken into account for turbocharged engine simulations. Generally, an engine simulation based on one-dimensional gas dynamics uses turbocharger performance maps which are measured without quantifying and qualifying the heat transfer, regardless of the fact that they are measured on the hot-flow or cold-flow gas-stand. Since heat transfer situations vary for on-engine turbochargers, the maps have to be shifted and corrected in the 1-D engine simulation, which mass and efficiency multipliers usually do for both the turbine and the compressor. The multipliers change the maps and are often different for every load point. Particularly, the efficiency multiplier is different for every heat transfer situation on the turbocharger. The heat transfer leads to a deviation from turbocharger performance maps, and increased complexity of the turbocharged engine simulation. Turbochargers operate under different heat transfer situations while they are installed on the engines. The main objectives of this thesis are: heat transfer modeling of a turbocharger to quantify and qualify heat transfer mechanisms, improving turbocharged engine simulation by including heat transfer in the turbocharger, assessing the use of two different turbocharger performance maps concerning the heat transfer situation (cold-measured and hot-measured turbocharger performance maps) in the simulation of a measured turbocharged engine, prediction of turbocharger walls’ temperatures and their effects on the turbocharger performance on different heat transfer situations. Experimental investigation has been performed on a water-oil-cooled turbocharger, which was installed on a 2-liter GDI engine for different load points of the engine and different heat transfer situations on the turbocharger by using insulators, an extra cooling fan, radiation shields and water-cooling settings. In addition, several thermocouples have been used on accessible surfaces of the turbocharger to calculate external heat transfers. Based on the heat transfer analysis of the turbocharger, the internal heat transfer from the bearing housing to the compressor significantly affects the compressor. However, the internal heat transfer from the turbine to the bearing housing and the external heat transfer of the turbine housing mainly influence the turbine. The external heat transfers of the compressor housing and the bearing housing, and the frictional power do not play an important role in the heat transfer analysis of the turbocharger. The effect of the extra cooling fan on the energy balance of the turbocharger is significant. However, the effect of the water is more significant on the external heat transfer of the bearing housing and the internal heat transfer from the bearing housing to the compressor. It seems the radiation shield between the turbine and the compressor has no significant effect on the energy balance of the turbocharger. The present study shows that the heat transfer in the turbocharger is very crucial to take into account in the engine simulations. This improves simulation predictability in terms of getting the compressor efficiency multiplier equal to one and turbine efficiency multiplier closer to one, and achieving turbine outlet temperature close to the measurement. Moreover, the compressor outlet temperature becomes equal to the measurement without correcting the map. The heat transfer situation during the measurement of the turbocharger performance influences the amount of simulated heat flow to the compressor. The heat transfer situation may be defined by the turbine inlet temperature, oil heat flux and water heat flux. However, the heat transfer situation on the turbine makes a difference on the required turbine efficiency multiplier, rather than the amount of turbine heat flow. It seems the turbine heat flow is a stronger function of available energy into the turbine. Of great interest is the fact that different heat situations on the turbocharger do not considerably influence the pressure ratio of the compressor. The turbine and compressor efficiencies are the most important parameters that are affected by that. The component temperatures of the turbocharger influence the working fluid temperatures. Additionally, the turbocharger wall temperatures are predictable from the experiment. This prediction enables increased precision in engine simulations for future works in transient operations. / QC 20120504

Page generated in 0.0448 seconds