Spelling suggestions: "subject:"turbomachinery.""
81 |
A reduced-order meshless energy (ROME) model for the elastodynamics of mistuned bladed disksFang, Chih 05 1900 (has links)
No description available.
|
82 |
Experimental and theoretical study on centrifugal pump impeller-scroll matchingSalaspini, Aldo U. January 1975 (has links)
Doctorat en sciences appliquées / info:eu-repo/semantics/nonPublished
|
83 |
Power Harvesting from Shock Waves: the Axial Bladeless TurbineJames Braun (7042724) 16 December 2020 (has links)
<div>A new class of bladeless turbines was developed which allows for power extraction from harsh environments with minimal maintenance cost. This is achieved through a wavy hub surface that promotes shocks and expansion fans and hence generates torque besides trust if used as bottoming or topping cycle. </div><div>A numerical procedure to design, mesh, and model this new expansion device through steady and unsteady Reynolds Averaged Navier Stokes simulations is outlined. Then, the full three-dimensional flow field is replicated using a two-dimensional geometry to enable a simpler test section with full optical access at the Purdue Experimental Turbine Aerothermal Lab. Pressure, heat flux, and skin friction are computed via several measurement techniques to provide an accurate estimation of the uncertainties on the power, efficiency, and heat flux of the bladeless turbine. High-frequency pressure sensors (160 kHz) along with a high-frequency heat flux sensor (atomic layer thermopile) are used to characterize the unsteady phenomena on the hub and the shroud. Unsteadiness in the flow field is assessed through 10 kHz shadowgraph, density gradients are quantitatively assessed via 3 kHz Background Oriented Schlieren, and unsteady velocity components and flow angles are characterized with 1 kHz Femtosecond Laser Electronic Excitation Tagging. A reduced order model is constructed with Spectral Proper Orthogonal Decomposition to retrieve the dominant frequencies in the flow field, which could be associated with a multitude of shock-boundary layer, shock-shock, and shock-shear layer interactions.</div><div>A parametric study and multi-objective optimization to maximize power extraction while minimizing pressure loss and heat flux are performed. The operational envelope and scaling of the bladeless turbine are described for several reduced mass flows, reduced speeds, and swirl angles. Based on all the gathered simulations, a guideline for the design of bladeless turbines is provided.</div><div><br></div><div>Finally, the operation of the bladeless turbine is analyzed considering the unsteady propagation of a rotating oblique shock throughout the passage. Non-dimensional parameters to generically describe rotating shocks are discussed, and their influence on the operation of the turbine is assessed. Correction terms for the power and pressure loss during the unsteady operation of the bladeless turbine are developed with results of this section.</div><div><br></div>
|
84 |
An experimental and numerical investigation of the performance of compressor cascades with stalled flowYocum, Adam M. January 1988 (has links)
This investigation was conducted to determine how design variables affect the basic flow characteristics and performance of compressor cascades with stalled flow. The performance of stalled cascades is required for analyzing with computer models stall and post stall behavior of axial flow compressors. In this investigation, the unsteadiness of the stalled flow and the stalled cascade performance as indicated by the blade normal force and total pressure loss were evaluated.
The investigation consisted of both experimental and numerical phases. The effects of stagger, angle of attack and Reynolds number were investigated experimentally using a two-dimensional cascade facility. Surface flow visualization, smoke flow visualization, velocity measurements and pressure measurements were used to evaluate the flow. The flow was modeled numerically by solving the Navier-Stokes equations for a cascade of flat plates.
All of the results indicate that blade stagger is a key variable in determining the performance of a stalled cascade. The smoke flow visualization revealed that propagating stall occurred for the cascades with staggers of 36.5 and 45 degrees at all angles of attack greater than or equal to the angle of full stall inception. Propagating stall was never observed for the cascade with a 25 degree stagger. The flow in the passages of the 25 degree stagger cascade was characterized by two distinct regions of flow, a potential or inviscid region with no losses and a separated region with high losses. For the two higher stagger cascades, two distinct regions did not exist. The performance data for the cascades were consistent with the qualitative results obtained in the flow visualization. When presented as a function of angle of attack, the performance parameters indicate that the loss curve is steeper, the maximum value of the normal force coefficient is lower, and the maximum normal force occurred at a lower angle of attack for the higher staggered cascades. The numerical study revealed trends in cascade performance similar to those found in the experimental study and showed that the predicted losses continue to rise as the limiting inlet angle is approached. / Ph. D.
|
85 |
Analytical prediction of the unsteady lift on a rotor induced by downstream flow obstructionsTaylor, Arthur C. January 1986 (has links)
A two-dimensional, inviscid, incompressible procedure is presented for predicting the unsteady lift on turbomachinery blades caused by the upstream potential disturbance of downstream flow obstructions. The method is applied to a particular geometry which consists of a rotor, a downstream stator, and downstream struts which support the engine casing. Using the Douglas-Neumann singularity superposition computer program to model the downstream flow obstructions, classical equations of thin airfoil theory are then employed, to compute the unsteady lift on the upstream rotor blades. Very good agreement between the Douglas-Neumann program and experimental measurements was obtained for the downstream stator-strut flow field. The calculations for the unsteady lift due to the struts were in good agreement with the experiments in showing that the unsteady lift due to the struts decays exponentially with increased axial separation of the rotor and the struts. However, the calculations for the unsteady lift due to the stator were two orders of magnitude smaller than that measured in experiments. This is attributed to the strong viscous interaction between the rotor and stator blade rows. / M.S.
|
86 |
Shock formation in overexpanded flow: a study using the hydraulic analogyElward, Kevin M. 21 November 2012 (has links)
Tests were performed to study the mechanism of shock formation in supersonic flow in long orifices to gain insight into the leakage flow of turbine tip gaps. The flow was modeled on a water table using a sharp-edged rectangular channel. The hydraulic analogy between free surface water flows and compressible gas flows was used to study the implications of the water table flow on tip leakage flows.
The flow on the water table exhibited oblique hydraulic jumps starting on the channel sidewall near the channel entrance. This flow was analyzed using the oblique hydraulic jump relations developed by classical hydraulic theory. The results of this analysis suggested a model for the formation of the jump. As the flow accelerates around the corner of the channel entrance, supercritical free stream flow is turned as it intersects the sidewall. The abrupt change in flow direction results in the formation of the oblique hydraulic jump.
An acceptable hydraulic analogy of compressible gas flows with shocks was obtained by reducing the surface tension of the water and using a large model size. The modified analogy for non-isentropic flow then allowed quantitative evaluation of the modeled shock structure in a compressible flow field. The predicted shock formation in such a flow has possible implications for both the efficiency of a gas turbine and the useful life of the turbine blade. / Master of Science
|
87 |
Development of a new shock capturing formula for pressure correction methodsGupta, Ajay K. 17 December 2008 (has links)
Several methods have been developed to capture shock waves in turbo machinery flows, such as Moore's pressure correction procedure and Denton's time marching procedure. The time marching procedure is traditionally used for transonic flow calculations, whereas the pressure correction method is better suited for incompressible and subsonic flows. However, the focus of this research is on the Moore pressure correction flow code, the Moore Elliptical Flow Program (MEFP) , to calculate shock waves in transonic compressor fans.
A new pressure interpolation method, the 2M formula, is developed to improve the shock capturing capabilities of the MEFP flow code. The 2M formula is a two Mach number dependent formula, with Mach numbers Mi and M i + 1. The previously used pressure interpolation method, the M&M formula, is a one Mach number dependent formula, using the maximum of Mi and Mi + 1 . In the development of the 2M formula, J.G. Moore's stability criterion is applied to the pressure correction equation such that the center point coefficient is greater than the sum of the other positive coefficients. / Master of Science
|
88 |
A modified Baldwin-Lomax turbulence model for turbomachinery wakesBrock, Jerry S. 05 September 2009 (has links)
A critical evaluation of the Baldwin-lomax (Bl) turbulence model for shock/shear layer interactions, reversed flow, and curved, asymmetric wakes is made. No general definition for reference line is available for wakes, and difficulties exist for length scale prediction in complex flows. An entropy envelope for shear layers, and the locus of maximum entropy to define the wake centerline is proposed. The range of the Bl model is limited to the entropy envelope. This provides all relevant modeling data, and allows general application of existing reversed flow corrections. The total enhancements are flow adaptive and form the Dynamic Bl model. This robust model is more accurate in complex boundary layers and wakes. The Dynamic Bl model is applied to a supersonic fan cascade at the design incidence. Sharp differences in turbulent viscosities were seen between the the original, Baseline Bl, and Dynamic Bl models. Only slight differences exist in the overall cascade solutions. This includes loss factors which were produced by different mechanisms. The Baseline BL model predicted separation on the SS surface and larger standing vorticies off the TE. The Dynamic Bl model predicted attached boundary layers, smaller standing vorticies off the TE, but uniformly higher skin friction. The shock structure in the cascade may reduce the flow field dependence on specific viscosity profile characteristics, so these may be less important than overall turbulence levels. / Master of Science
|
89 |
A study of tip-leakage flow through orifice investigationsHenry, Gregory S. 17 November 2012 (has links)
"Compressible fluid dynamics of flow through plain-faced long orifices was investigated with the hope of gaining insight into the fluid dynamics of tip leakage flow. The Reynolds number range investigated was greater than 10*. Measurements were made of the discharge coefficient as a function of back pressure ratio for a sharp-edged orifice and long orifices with an l/d from 1/2 to 8. The discharge coefficient measurements indicate the mass flow rate in an orifice with an l/d of approximately 2 is the largest and the flow rate in a sharp-edged orifice is the smallest for pressure ratios greater than 0.27. The mass flow rate in a sharp-edged orifice is largest for pressure ratios below 0.27. To visualize the flow in a long orifice and model centerline pressure variation, a water table study was performed. The results demonstrate that the flow separates from the sharp corner at the orifice entrance, it accelerates to a maximum Mach number, and then the pressure increases. For back pressures above 0.50, a pressure decrease follows the initial pressure increase. If the maximum Mach number is supersonic, oblique shocks will exist. At the higher back pressures that produce supersonic maximum Mach numbers (0.50 P<sub>B</sub>/P₀ < 0.70), the oblique shocks reflect from the centerline as ""Mach reflections"" and the flow is subsonic after the pressure increase. The maximum Mach number for a back pressure ratio of 0.50 is approximately 1.5. At lower back pressure ratios (P<sub>B</sub>/P₀ <0.70), the oblique shocks reflect from the centerline in a ""regular"" manner and the flow remains supersonic on the centerline once supersonic speeds are reached. The flow in a long orifice is relatively constant for all back pressure ratios below approximately 0.30. The maximum Mach number for pressure ratios below 0.30 is approximately 1.8.
One-dimensional analyses were used to model the flow in long orifices with maximum Mach numbers less than 1.3. Higher discharge coefficients of long orifices compared to sharp-edged orifices are due to pressure rises in the orifices caused by mixing and shock waves. These increases in the discharge coefficients are partly offset by friction and boundary layer blockage. For maximum Mach numbers greater than 1.3, the flow in long orifices is believed to become significantly two-dimensional because of supersonic effects." / Master of Science
|
90 |
Tip leakage loss development in a linear turbine cascadePeters, David W. 05 September 2009 (has links)
Tip leakage losses were studied in a linear turbine cascade with a tip clearance gap equal to 2.1 percent of blade height. The blades of the cascade have a turning angle of 109.4 degrees, an aspect ratio of 1.0, and an axial chord length of 235.2 mm. The cascade was located at the exit of a low speed wind tunnel; the blade exit Reynolds number based upon blade axial chord was 4.5x10⁵. The flow was measured at a plane 0.96 axial chords downstream from the blade leading edge. Barlier studies performed at the tip gap exit and at a downstream plane 1.4 axial chords from the blade leading edge were utilized with the present study to understand loss development better. The effect of tip leakage and the corresponding loss production mechanisms involved as the flow mixes out were analyzed.
As part of the objective of the study, a computerized data acquisition system was developed which acquires pressure data and controls movement of a five hole pressure probe.
The flow properties at the measurement plane were numerically integrated. To estimate the maximum potential loss of the cascade, the flow was mixed-out through a momentum analysis. The loss at the measurement plane due to tip leakage was found to be equal to the sum of the total pressure loss within the tip gap and the dissipated tip gap secondary kinetic energy. As the flow proceeded downstream, losses were attributed to dissipation of secondary kinetic energy, trailing edge wake mixing, endwall losses, and primary flow mixing. / Master of Science
|
Page generated in 0.0897 seconds