• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 6
  • 6
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Large-eddy simulation of physiological pulsatile flow through a constricted channel

Hossain, Afzal 20 September 2012 (has links)
In this thesis, large-eddy simulation (LES) is used to simulate both Newtonian and non-Newtonian physiological pulsatile flows in constricted channels to gain insights into the physical phenomenon of laminar-turbulent flow transition due to the presence of an artificial arterial stenosis. The advanced dynamic nonlinear subgrid-scale stress (SGS) model of Wang and Bergstrom (DNM) was utilized to conduct numerical simulations and its predictive performance was examined in comparison with that of the conventional dynamic model (DM) of Lilly. An in-house LES code has been modified to conduct the unsteady numerical simulations, and the results obtained have been validated against available experimental and direct numerical simulation (DNS) results. The physical characteristics of the flow field have been thoroughly studied in terms of the resolved mean velocity, turbulence kinetic energy, viscous wall shear stress, and turbulence energy spectra along the central streamline of the domain.
2

Large-eddy simulation of physiological pulsatile flow through a constricted channel

Hossain, Afzal 20 September 2012 (has links)
In this thesis, large-eddy simulation (LES) is used to simulate both Newtonian and non-Newtonian physiological pulsatile flows in constricted channels to gain insights into the physical phenomenon of laminar-turbulent flow transition due to the presence of an artificial arterial stenosis. The advanced dynamic nonlinear subgrid-scale stress (SGS) model of Wang and Bergstrom (DNM) was utilized to conduct numerical simulations and its predictive performance was examined in comparison with that of the conventional dynamic model (DM) of Lilly. An in-house LES code has been modified to conduct the unsteady numerical simulations, and the results obtained have been validated against available experimental and direct numerical simulation (DNS) results. The physical characteristics of the flow field have been thoroughly studied in terms of the resolved mean velocity, turbulence kinetic energy, viscous wall shear stress, and turbulence energy spectra along the central streamline of the domain.
3

Noise Radiation from a Supersonic Nozzle with Jet/Surface Interaction

Baier, Florian 28 June 2021 (has links)
No description available.
4

Modelling of shear sensitive cells in stirred tank reactor using computational fluid dynamics

Singh, Harminder January 2011 (has links)
Animal cells are often cultured in stirred tank reactors. Having no cell wall, these animal cells are very sensitive to the fluid mechanical stresses that result from agitation by the impeller and from the rising and bursting of bubbles, which are generated within the culture medium in the stirred tank to supply oxygen by mass transfer to the cells. If excessive, these fluid mechanical stresses can result in damage/death of animal cells. Stress due to the rising and bursting of bubbles can be avoided by using a gas-permeable membrane, in the form of a long coiled tube (with air passing through it) within the stirred tank, instead of air-bubbles to oxygenate the culture medium. Fluid mechanical stress due to impeller agitation can be controlled using appropriate impeller rotational speeds. The aim of this study was to lay the foundations for future work in which a correlation would be developed between cell damage/death and the fluid mechanical stresses that result from impeller agitation and bubbling. Such a correlation could be used to design stirred-tank reactors at any scale and to determine appropriate operating conditions that minimise cell damage/death due to fluid mechanical stresses. Firstly, a validated CFD model of a baffled tank stirred with a Rushton turbine was developed to allow fluid mechanical stresses due to impeller agitation to be estimated. In these simulations, special attention was paid to the turbulence energy dissipation rate, which has been closely linked to cell damage/death in the literature. Different turbulence models, including the k-ε, SST, SSG-RSM and the SAS-SST models, were investigated. All the turbulence models tested predicted the mean axial and tangential velocities reasonably well, but under-predicted the decay of mean radial velocity away from the impeller. The k-ε model predicted poorly the generation and dissipation of turbulence in the vicinity of the impeller. This contrasts with the SST model, which properly predicted the appearance of maxima in the turbulence kinetic energy and turbulence energy dissipation rate just off the impeller blades. Curvature correction improved the SST model by allowing a more accurate prediction of the magnitude and location of these maxima. However, neither the k-ε nor the SST models were able to properly capture the chaotic and three-dimensional nature of the trailing vortices that form downstream of the blades of the impeller. In this sense, the SAS-SST model produced more physical predictions. However,this model has some drawbacks for modelling stirred tanks, such as the large number of modelled revolutions required to obtain good statistical averaging for calculating turbulence quantities. Taking into consideration both accuracy and solution time, the SSG-RSM model was the least satisfactory model tested for predicting turbulent flow in a baffled stirred tank with a Rushton turbine. In the second part of the work, experiments to determine suitable oxygen transfer rates for culturing cells were carried out in a stirred tank oxygenated using either a sparger to bubble air through the culture medium or a gas-permeable membrane. Results showed that the oxygen transfer rates for both methods of oxygenation were always above the minimum oxygen requirements for culturing animal cells commonly produced in industry, although the oxygen transfer rate for air-bubbling was at-least 10 times higher compared with using a gas-permeable membrane. These results pave the way for future experiments, in which animal cells would be cultured in the stirred tank using bubbling and (separately) a gas-permeable membrane for oxygenation so that the effect of rising and bursting bubbles on cell damage/death rates can be quantified. The effect of impeller agitation on cell damage/death would be quantified by using the gas permeable membrane for oxygenation (to remove the detrimental effects of bubbling), and changing the impeller speed to observe the effect of agitation intensity. In the third and final part of this work, the turbulent flow in the stirred tank used in the oxygenation experiments was simulated using CFD. The SST turbulence model with curvature correction was used in these simulations, since it was found to be the most accurate model for predicting turbulence energy dissipation rate in a stirred tank. The predicted local maximum turbulence energy dissipation rate of 8.9x10¹ m2/s3 at a rotational speed of 900 rpm was found to be substantially less than the value of 1.98x10⁵ m2/s3 quoted in the literature as a critical value above which cell damage/death becomes significant. However, the critical value for the turbulence energy dissipation rate quoted in the literature was determined in a single-pass flow device, whereas animal cells in a stirred tank experience frequent exposure to high turbulence energy dissipation rates (in the vicinity of the impeller) due to circulation within the stirred tank and long culture times. Future cell-culturing experiments carried out in the stirred tank of this work would aim to determine a more appropriate critical value for the turbulence energy dissipation rate in a stirred tank, above which cell damage/death becomes a problem.
5

Experimental Study of Three-Dimensional Turbulent Offset Jets and Wall Jets

Agelin-Chaab, Martin 19 October 2010 (has links)
An experimental study was designed to examine and document the development and structures of turbulent 3D offset jets. The generic 3D wall jets at the same Reynolds numbers was used as the basis of comparison. The experiments were performed using a high resolution particle image velocimetry technique to perform velocity measurements at three Reynolds numbers based on the jet exit diameter and velocities of 5000, 10000 and 20000 and four jet offset height ratios of 0.5, 1.0, 2.0 and 4.0. The measurements were performed in the streamwise/wall-normal plane from 0 to 120 jet exit diameters and in the streamwise/lateral plane from 10 to 80 jet exit diameters. The velocity data were analyzed using (i) mean velocities and one-point statistics such as turbulence intensities, Reynolds stresses, triple velocity products and some terms in the transport equations for the turbulence kinetic energy, (ii) two-point velocity correlations to study how the turbulence quantities are correlated as well as the length scale and angle of inclination of the hairpin-like vortex structures, and (iii) proper orthogonal decomposition to examine the energy distribution and the role of the large scale structures in the turbulence intensities and Reynolds shear stresses. The decay of the maximum mean velocities and spread of the jet half widths became independent of Reynolds number much earlier in the generic wall jet than the offset jets. The flow development is delayed with increasing offset heights. The decay rate and wall-normal spread rate increased with the offset heights, whereas the lateral spread rate decreased with offset heights, which is consistent with previous studies. The two-point auto-correlations and the proper orthogonal decomposition results indicate the presence of more large scale structures in the outer and self-similar regions than in the inner and developing regions. The iso-contours of the streamwise autocorrelations in the inner regions were inclined at similar angles of β = 11.2 ± 0.6 degrees, which are in good agreement with reported values in boundary layer studies. The angles decrease with increasing distance from the wall.
6

Experimental Study of Three-Dimensional Turbulent Offset Jets and Wall Jets

Agelin-Chaab, Martin 19 October 2010 (has links)
An experimental study was designed to examine and document the development and structures of turbulent 3D offset jets. The generic 3D wall jets at the same Reynolds numbers was used as the basis of comparison. The experiments were performed using a high resolution particle image velocimetry technique to perform velocity measurements at three Reynolds numbers based on the jet exit diameter and velocities of 5000, 10000 and 20000 and four jet offset height ratios of 0.5, 1.0, 2.0 and 4.0. The measurements were performed in the streamwise/wall-normal plane from 0 to 120 jet exit diameters and in the streamwise/lateral plane from 10 to 80 jet exit diameters. The velocity data were analyzed using (i) mean velocities and one-point statistics such as turbulence intensities, Reynolds stresses, triple velocity products and some terms in the transport equations for the turbulence kinetic energy, (ii) two-point velocity correlations to study how the turbulence quantities are correlated as well as the length scale and angle of inclination of the hairpin-like vortex structures, and (iii) proper orthogonal decomposition to examine the energy distribution and the role of the large scale structures in the turbulence intensities and Reynolds shear stresses. The decay of the maximum mean velocities and spread of the jet half widths became independent of Reynolds number much earlier in the generic wall jet than the offset jets. The flow development is delayed with increasing offset heights. The decay rate and wall-normal spread rate increased with the offset heights, whereas the lateral spread rate decreased with offset heights, which is consistent with previous studies. The two-point auto-correlations and the proper orthogonal decomposition results indicate the presence of more large scale structures in the outer and self-similar regions than in the inner and developing regions. The iso-contours of the streamwise autocorrelations in the inner regions were inclined at similar angles of β = 11.2 ± 0.6 degrees, which are in good agreement with reported values in boundary layer studies. The angles decrease with increasing distance from the wall.

Page generated in 0.0933 seconds