Spelling suggestions: "subject:"turtle"" "subject:"turtles""
1 |
Tracking of more than one person in a smart environment using fixed sensors and a mobile robotQiu, Yinan, Ma, Jianyuan January 2015 (has links)
In this thesis work, a system for locating different occupants in a smart environment setting using a set of small, simple (binary) sensors and a robot (Turtlebot) is designed, implemented and tested. The sensors were chosen to be simple devices containing only "ON" and "OFF" status without any functionality to identify occupants. These sensors were ubiquitously installed in an office environment at Halmstad University. The Turtlebot is an assistant robot with a Kinect camera that supports the system to recognize the occupant. The system combines new inputs to previous information using a data association algorithm that makes predictions about the future location of the occupants. Preliminary results on a short time experiments of two different scenarios show that localizing two different occupants at the same time, using the proposed data association algorithm and face recognition can be achieved with more than 80% accuracy depending on the activities in the smart home.
|
2 |
Enabling Network-Aware Cloud Networked Robots with Robot Operating System : A machine learning-based approachNordlund, Fredrik Hans January 2015 (has links)
During the recent years, a new area called Cloud Networked Robotics (CNR) has evolved from conventional robotics, thanks to the increasing availability of cheap robot systems and steady improvements in the area of cloud computing. Cloud networked robots refers to robots with the ability to offload computation heavy modules to a cloud, in order to make use of storage, scalable computation power, and other functionalities enabled by a cloud such as shared knowledge between robots on a global level. However, these cloud robots face a problem with reachability and QoS of crucial modules that are offloaded to the cloud, when operating in unstable network environments. Under such conditions, the robots might lose the connection to the cloud at any moment; in worst case, leaving the robots “brain-dead”. This thesis project proposes a machine learning-based network aware framework for a cloud robot, that can choose the most efficient module placement based on location, task, and the network condition. The proposed solution was implemented upon a cloud robot prototype based on the TurtleBot 2 robot development kit, running Robot Operating System (ROS). A continuous experiment was conducted where the cloud robot was ordered to execute a simple task in the laboratory corridor under various network conditions. The proposed solution was evaluated by comparing the results from the continuous experiment with measurements taken from the same robot, with all modules placed locally, doing the same task. The results show that the proposed framework can potentially decrease the battery consumption by 10% while improving the efficiency of the task by 2.4 seconds (2.8%). However, there is an inherent bottleneck in the proposed solution where each new robot would need 2 months to accumulate enough data for the training set, in order to show good performance. The proposed solution can potentially benefit the area of CNR if connected and integrated with a shared-knowledge platform which can enable new robots to skip the training phase, by downloading the existing knowledge from the cloud. / Under de senaste åren har ett nytt forskningsområde kallat Cloud Networked Robotics (CNR) växt fram inom den konventionella robottekniken, tack vare den ökade tillgången på billiga robotsystem och stadiga framsteg inom området cloud computing. Molnrobotar syftar på robotar med förmågan att flytta resurstunga moduler till ett moln för att ta del av lagringskapaciteten, den skalbara processorkraften och andra tjänster som ett moln kan tillhandahålla, t.ex. en kunskapsdatabas för robotar över hela världen. Det finns dock ett problem med dessa sorters robotar gällande nåbarhet och QoS för kritiska moduler placerade på ett moln, när dessa robotar verkar i instabila nätverksmiljöer. I ett sådant scenario kan robotarna när som helst förlora anslutningen till molnet, vilket i värsta fall lämnar robotarna hjärndöda. Den här rapporten föreslår en maskininlärningsbaserad nätverksmedveten ramverkslösning för en molnrobot, som kan välja de mest effektiva modulplaceringarna baserat på robotens position, den givna uppgiften och de rådande nätverksförhållanderna. Ramverkslösningen implementerades på en molnrobotsprototyp, baserad på ett robot development kit kallat TurtleBot 2, som använder sig av ett middleware som heter Robot Operating System (ROS). Ett fortskridande experiment utfördes där molnroboten fick i uppgift att utföra ett enkelt uppdrag i laboratoriets korridor, under varierande nätverksförhållanden. Ramverkslösningen utvärderades genom att jämföra resultaten från det fortskridrande experimentet med mätningar som gjordes med samma robot som utförde samma uppgift, fast med alla moduler placerade lokalt på roboten. Resultaten visar att den föreslagna ramverkslösningen kan potentiellt minska batterikonsumptionen med 10%, samtidigt som tiden för att utföra en uppgift kan minskas med 2.4 sekunder (2.8%). Däremot uppstår en flaskhals i framtagna lösningen där varje ny robot kräver 2 månader för att samla ihop nog med data för att maskinilärningsalgoritmen ska visa bra prestanda. Den förlsagna lösningen kan dock vara fördelaktig för CNR om man integrerar den med en kunskapsdatabas för robotar, som kan möjliggöra för varje ny robot att kringå den 2 månader långa träningsperioden, genom att ladda ner existerande kunskap från molnet.
|
3 |
Simultaneous Localization And Mapping Using a Kinect In a Sparse Feature Indoor Environment / Simultan lokalisering och kartering med hjälp av en Kinect i en inomhusmiljö med få landmärkenHjelmare, Fredrik, Rangsjö, Jonas January 2012 (has links)
Localization and mapping are two of the most central tasks when it comes to autonomous robots. It has often been performed using expensive, accurate sensors but the fast development of consumer electronics has made similar sensors available at a more affordable price. In this master thesis a TurtleBot, robot and a Microsoft Kinect, camera are used to perform Simultaneous Localization And Mapping, SLAM. The thesis presents modifications to an already existing open source SLAM algorithm. The original algorithm, based on visual odometry, is extended so that it can also make use of measurements from wheel odometry and asingle axis gyro. Measurements are fused using an Extended Kalman Filter, EKF, operating in a multirate fashion. Both the SLAM algorithm and the EKF are implemented in C++ using the framework Robot Operating System, ROS. The implementation is evaluated on two different data sets. One set is recorded in an ordinary office room which constitutes an environment with many landmarks. The other set is recorded in a conference room where one of the walls is flat and white. This gives a partially sparse featured environment. The result by providing additional sensor information is a more robust algorithm. Periods without credible visual information does not make the algorithm lose its track and the algorithm can thus be used in a larger variety of environments including such where the possibility to extract landmarks is low. The result also shows that the visual odometry can cancel out drift introduced by wheel odometry and gyro sensors.
|
4 |
Simultaneous Localization And Mapping Using a Kinect in a Sparse Feature Indoor Environment / Simultan lokalisering och kartering med hjälp av en Kinect i en inomhusmiljö med få landmärkenHjelmare, Fredrik, Rangsjö, Jonas January 2012 (has links)
Localization and mapping are two of the most central tasks when it comes toautonomous robots. It has often been performed using expensive, accurate sensorsbut the fast development of consumer electronics has made similar sensorsavailable at a more affordable price. In this master thesis a TurtleBot\texttrademark\, robot and a MicrosoftKinect\texttrademark\, camera are used to perform Simultaneous Localization AndMapping, SLAM. The thesis presents modifications to an already existing opensource SLAM algorithm. The original algorithm, based on visual odometry, isextended so that it can also make use of measurements from wheel odometry and asingle axis gyro. Measurements are fused using an Extended Kalman Filter,EKF, operating in a multirate fashion. Both the SLAM algorithm and the EKF areimplemented in C++ using the framework Robot Operating System, ROS. The implementation is evaluated on two different data sets. One set isrecorded in an ordinary office room which constitutes an environment with manylandmarks. The other set is recorded in a conference room where one of the wallsis flat and white. This gives a partially sparse featured environment. The result by providing additional sensor information is a more robust algorithm.Periods without credible visual information does not make the algorithm lose itstrack and the algorithm can thus be used in a larger variety of environmentsincluding such where the possibility to extract landmarks is low. The resultalso shows that the visual odometry can cancel out drift introduced bywheel odometry and gyro sensors.
|
5 |
Interaktivní rozhraní pro vzdáleného robota pro Android / Interactive Interface for Robot Remote Control for AndroidRobotka, Vojtěch January 2013 (has links)
The development of autonomous robots has made a significant progress and first personal robots for common use start to appear. To use this robots, we need to develop applications and user interfaces to interact with them. The goal of this project is to make a universal interface for robot remote control. This work focuses on robots based on the ROS platform. This gives the final application a potential of use on other robotic projetcs running on ROS. The designed remote interface accomplishes two main purposes. The first is to show important data in a context of a 3D scene to help user understand the state of the controlled robot. And the second goal is to allow the user execute some basic manipulation with the robot. The final application was successfully adapted and tested on experimental robots Care-O-Bot and Turtlebot.
|
6 |
Modelování a simulace robotických aplikací / Modelling and simulation of robotic applicationsŠťastný, Martin January 2015 (has links)
The aim of this master thesis is to make research of Open Source software, which are used for simulation autonomous robots. At the begining is performed research of selected robotic simulators. In the first part of this work is to get familiar with robotic simulator Gazebo and robotic framework ROS. The second part of this work deals with simulating and subsequent implementation of choosen robotic tasks through the simulator Gazebo and the ROS framework.
|
Page generated in 0.0436 seconds