• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 163
  • 25
  • 10
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 244
  • 113
  • 59
  • 55
  • 40
  • 32
  • 26
  • 25
  • 25
  • 23
  • 22
  • 19
  • 15
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Fire ants on sea turtle nesting beaches in South Florida, USA, and ST. Croix, USVI

Unknown Date (has links)
The red imported fire ant, Solenopsis invicta, is a South American native introduced in Alabama in the early 20th century. This predatory species has rapidly spread throughout the southeastern US and parts of the West Indies, inflicting great ecological and economic damage. For example, Solenopsis invicta is known to attack the eggs and hatchlings of ground nesting birds and reptiles. The ants swarm into the nests attacking hatchlings and diminishing their chance for survival. My thesis research aimed to survey the distribution of ants on sea turtle nesting beaches in South Florida and St. Croix, USVI, and to evaluate the possible threat of Solenopsis invicta and other predatory ants to sea turtle hatchlings. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2013.
162

Nest site fidelity and nest site selection of loggerhead, Caretta Caretta, and leatherback, dermochelys coriacea, turtles in KwaZulu-Natal, South Africa

Botha, Marié January 2010 (has links)
Loggerhead and leatherback sea turtles nest on the beaches of the north-eastern portion of Kwazulu-Natal within the iSimangaliso Wetland Park. Loggerheads place ~60 percent of all nests within an 8 km stretch of beach, whereas leatherbacks tend to space their nests more evenly along the entire length of the monitoring area. The study aimed to determine nest site fidelity of loggerheads and leatherbacks (using four decades of nesting data housed by Ezemvelo KZN Wildlife) and the factors that influence nest site selection of both species within the 56 km of turtle monitoring area (32N to 100S) and the 5 km area of high-density loggerhead nesting (0N to 12N). The effectiveness of nest site selection was then determined through the hatching success of loggerheads over the 5km area (0N to 12N). Results showed that loggerheads show a high degree of nest site fidelity (~3 km) with nest site fidelity of individuals increasing over subsequent seasons of nesting, as well as these individuals using the same stretches of beach for nesting (the most popular area being 1N to 4N for repeat nesters). Leatherbacks displayed nest site fidelity of ~9 km and this did not increase over successive seasons of nesting. In terms of nest site selection, loggerheads and leatherbacks both avoided areas where low shore rock was present, whereas both species preferred nesting on beaches of intermediate morphodynamic state. Leatherback nesting was significantly higher in areas with wider surf zones. Both species were able to surpass the high water mark when nesting as nests below this point would be almost certainly doomed. Hatching success of loggerheads was comparative to high (83 %) relative to other studies, however, nest success varied across the beach from beacon 1N to 12N. Areas where highest nest success was observed were not areas of highest nest density presumably due to artificial lighting. Results from this study increase our understanding of the evolutionary biology of loggerhead and leatherback turtles in South Africa and the effectiveness of loggerhead nest site selection through hatching success.
163

Potential therapies and neuroprotective cascades in anoxia tolerant freshwater turtle Trachemys scripta ellegans

Unknown Date (has links)
Mammalian neurons exhibit extreme sensitivity to oxygen deprivation and undergo rapid and irreversible degeneration when oxygen supply is curtailed. Though several neuroprotective pathways are activated during oxygen deprivation, their analyses are masked by the complex series of pathological events which are triggered simultaneously. Such events can be analyzed in the anoxia tolerant fresh water turtle, which can inherently survive the conditions of oxygen deprivation and post-anoxic reoxygenation without brain damage. It is likely in such a model that modulation of a particular molecular pathway is adaptive rather than pathological. The major objective behind this study was to analyze the intracellular signaling pathways mediating the protective effects of adenosine, a potential neuromodulator, and its effect on cell survival by influencing the key prosurvival proteins that prevent apoptosis. In vivo and in vitro studies have shown that adenosine acts as a neuroprotective metabolite and its action can be duplicated or abrogated using specific agonist and antagonists. Stimulating the adenosine receptors using selective A1 receptor agonist N6-cyclopentyladenosine (CPA) activated the presumed prosurvival ERK and P13-K/AKT cascade promoting cell survival, and suppression of the receptor using the selective antagonist DPCPX (8- cyclopentyl-1,3-dipropylxanthine) activated the prodeath JNK and P38 pathways. The complex regulation of the MAPK's/AKT signaling cascades was also analyzed using their specific inhibitors. The inhibiton of the ERK and AKT pathway increased cell death, indicating a prosurvival role, whereas inhibiton of the JNK and p38 pathway increased cell survival in this model. In vitro studies have also shown a high Bcl-2/BAX ratio during anoxia and reoxygenation, indicating a strong resistance to cell death via apoptosis. / Silencing of the anti-apoptotic Bcl-2 gene using specific siRNA upregulated levels of prodeath BAX, thus altering the Bcl-2/BAX ratio and elevating cleaved Caspase-3 levels leading to increased cell death. Another promising neuroprotective target which we analyzed was Neuroglobin, which was induced during oxygen crisis and silencing this gene indicated that its plays a major role in modulation of ROS. This study strongly emphasizes the advantages of an alternate animal model in elucidating neuroprotective mechanisms and revealing novel therapeutic targets which could eventually help clinicians to design new stroke therapies based on naturally tolerant organisms. / by Gauri Nayak. / Thesis (Ph.D.)--Florida Atlantic University, 2009. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2009. Mode of access: World Wide Web.
164

Methionine sulfoxide reductase A (MsrA) and aging in the anoxia-tolerant freshwater turtle (Trachemys scripta)

Unknown Date (has links)
The enzyme Methionine sulfoxide reductase A (MsrA) repairs oxidized proteins, and may act as a scavenger of reactive oxygen species (ROS), making it a potential therapeutic target for age-related neurodegenerative diseases. The anoxia-tolerant turtle offers a unique model to observe the effects of oxidative stress on a system that maintains neuronal function following anoxia and reoxygenation, and that ages without senescence. MsrA is present in both the mitochondria and cytosol, with protein levels increasing respectively 3- and 4-fold over 4 hours of anoxia, and remaining 2-fold higher than basal upon reoxygenation. MsrA was knocked down in neuronally-enriched cell cultures via RNAi transfection. Propidium iodide staining showed no significant cell death during anoxia, but this increased 7-fold upon reoxygenation, suggesting a role for MsrA in ROS suppression during reperfusion. This is the first report in any system of MsrA transcript and protein levels being regulated by oxygen levels. / by Lynsey Erin Bruce. / Thesis (M.S.)--Florida Atlantic University, 2010. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2010. Mode of access: World Wide Web.
165

Ecological correlates of the abundance of juvenile green sea turtles (Chelonia Mydas) on nearshore reefs in southeast Florida

Unknown Date (has links)
Juvenile green turtle (Chelonia mydas) abundance differs among nearshore reefs, but why some sites are preferred over others is unknown. My study had two objectives: to quantify differences in abundance over time (one year) and to determine what ecological factors were correlated with those differences. I conducted quarterly surveys on reefs in Palm Beach and Broward Counties and compared reef sites with respect to (i) water depth, (ii) algal abundance and composition, and (iii) changes in reef area (caused by sand covering) through time (11 years). Turtles were most abundant on shallow reefs exposed to high light levels that remained stable (uncovered by sand) for long periods of time. These reefs had the highest diversity of algal species, in part because cropping by the turtles prevented any one species from becoming dominant. My results suggest that both physical and biological factors make some reefs more attractive to turtles than others / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2013.
166

Origins, movements, and foraging behavior of Hawksbill Sea Turtles (Eretmochelys imbricata) in Palm Beach County waters, Florida, USA

Unknown Date (has links)
This dissertation examined the natal origins, home-range, and in-situ foraging behavior of an aggregation of sub-adult hawksbill turtles (Eretmochelys imbricata) found off the coast of Palm Beach County, Florida. Surveys were conducted on approximately 30 linear km of reef between 15 and 30 m in depth. Tissue samples were retrieved from 112 turtles for mtDNA haplotype determination. GPS-linked satellite transmitters were deployed on six resident sub-adults, resulting in both minimum convex polygon (MCP) and 95%, 50%, and 25% kernel density estimates (KDE) of home-range size. A foraging ethogram was developed, and sequential analysis performed on thirty videos (141 total minutes) of in-situ foraging behavior. Seventeen total haplotypes were identified in this aggregation, the majority (75%) of which represented rookeries on Mexico’s Yucatan Peninsula. Other sources, from most to least important, include Barbados, Costa Rica, Puerto Rico, Antigua, and the U.S. Virgin Islands. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2014. / FAU Electronic Theses and Dissertations Collection
167

Ecosystem health and environmental influences on innate immune function in the loggerhead (Caretta caretta) and green (Chelonia mydas) sea turtle

Unknown Date (has links)
Loggerhead (Caretta caretta) and green (Chelonia mydas) turtles recruit to nearshore environments as juveniles. These often degraded habitats are associated with emerging diseases such as green turtle fibropapillomatosis (GTFP), however there are few studies on immune function in sea turtles. The objective of this research was to quantify phagocytosis of the innate immune system by flow cytometry and compare levels between animals from a degraded habitat (the Indian River Lagoon, FL) to a more pristine environment (the Trident Basin, Port Canaveral, FL), and across a range of temperatures. While in vitro temperatures did not alter rates of phagocytosis, it was higher in samples obtained in the summer than winter. Rates of phagocytosis in sea turtles with GTFP and from degraded environments with increased prevalence of GTFP were low compared to animals from the more pristine environment, suggesting that the environment can alter innate immunological function and thus contribute to the development of disease. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2014. / FAU Electronic Theses and Dissertations Collection
168

Molecular mechanisms of neuroprotection in the anoxia tolerant freshwater turtle

Unknown Date (has links)
Cardiac ischemia, stroke and some neurodegenerative disorders are all characterized by cell damage and death due to low oxygen levels. Comparative studies show that anoxia tolerant model systems present a unique opportunity to study "survival" instead of death in the complete absence of oxygen. The freshwater turtle (Trachemys scripta elegans) is unique in its ability to survive total oxygen deprivation for hours to days, as well as reoxygenation insult after anoxia. The broad objective of this study is to understand the modulation of key molecular mechanisms involving stress proteins and VEGF that offer neuroprotection and enhance cell survival in the freshwater turtle through anoxia and reoxygenation. In vivo analyses have shown that anoxia induced stress proteins (Hsp72, Hsp60, Grp94, Hsp60, Hsp27, HO-1); modest changes in the Bcl2/Bax ratio and no change in cleaved caspase-3 expression suggesting resistance to neuronal damage. These results were corroborated with immunohistochemical evidence indicating no damage in turtle brain when subjected to the stress of anoxia and A/R. To understand the functional role of Hsp72, siRNA against Hsp72 was utilized to knockdown Hsp72 in vitro (neuronally enriched primary cell cultures established from the turtle). Knockdown cultures were characterized by increased cell death associated with elevated ROS levels. Silencing of Hsp72 knocks down the expression of Bcl2 and increases the expression of Bax, thereby decreasing the Bcl2/Bax ratio. However, there was no increase in cytosolic Cytochrome c or the expression levels of cleaved Caspase-3. Significant increase in AIF was observed in the knockdown cultures that increase through anoxia and reoxygenation, suggesting a caspase independent pathway of cell death. / Expression of the master regulator of hypoxia, HIF1 alpha and its target gene, VEGF, were analyzed at the mRNA and protein levels. The results showed no significant increase in HIF-1 alpha levels but anoxia VE GF The levels of stress proteins and VEGF returned to control levels during reoxygenation suggesting robust ROS protection mechanisms through reoxygenation. The present study thereby emphasizes Trachemys scripta as an advantageous model to examine anoxia and reoxygenation survival without major damage to the brain due to it's modulation of molecular mechanisms. / by Shailaja Kesaraju. / Thesis (Ph.D.)--Florida Atlantic University, 2008 / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2008. Mode of access: World Wide Web.
169

Investigating maternal health and hatchling mortality in leatherback sea turtles (Dermochelys coriacea v.)

Unknown Date (has links)
The reproductive success of leatherback turtles (Dermochelys coriacea) is typically the lowest of the seven sea turtle species. Why this vital rate is decreased has remained unanswered for nearly a century. Recently, detailed postmortem examination of leatherback hatchlings identified muscular pathologies that suggested possible selenium deficiency. High bodily burdens of mercury compounds are associated with selenium depletion. Selenium is a necessary detoxifying nutrient that itself can be toxic at elevated concentrations. Mercury compounds are toxicants with no known biological function. High bodily concentrations of mercury can be detrimental to marine organismal health, reproduction and survival, both directly and indirectly through inducing selenium depletion. The goals of this dissertation are to evaluate several related hypotheses to explain low leatherback nest success. ... Because leatherbacks take in high volumes of prey, high tissue concentrations of mercury and selenium can result. This study provides the first evidence that chemical contaminants may explain low reproductive success in leatherback sea turtles. / by Justin R. Perrault. / Thesis (Ph.D.)--Florida Atlantic University, 2013. / Includes bibliography. / Mode of access: World Wide Web. / System requirements: Adobe Reader.
170

Vascular endothelial growth factor (VEGF), BCL-2, and BAX expression in fibropapilloma tumor tissue and skin tissue of sea turtles

Unknown Date (has links)
In sea turtles, the study of the etiology and development of fibropapillomatosis is not fully understood. Sea turtle fibropapillomatosis is a disease characterized by the proliferation of skin fibropapillomas and occasional internal fibromas. In this study, sea turtle fibropapilloma tumor and healthy tissue samples were used to look at VEGF, BCL-2 and Bax expression. Cancer tumors have a well established pattern of protein expression that involves overexpression of vascular endothelial growth factor (VEGF), responsible for the growth of new blood vessels, and a high BCL-2 to Bax ratio that leads to uncontrolled cell proliferation. Real time PCR was used to analyze VEGF expression, and Western blot techniques were used to measure BCL-2 and Bax expression. The results indicated that expression of VEGF was not significantly higher in tumor vs. skin tissue. For the differential expression of BCL-2 and Bax, the results were not in agreement with the established levels found in cancer studies, showing no significant change in BCL-2 expression and significantly higher levels of Bax in tumor vs. healthy tissue. / by Angela Bancalari-Schmidlapp. / Thesis (M.S.)--Florida Atlantic University, 2009. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2009. Mode of access: World Wide Web.

Page generated in 0.0332 seconds