• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 4
  • 3
  • 2
  • 1
  • Tagged with
  • 37
  • 37
  • 37
  • 13
  • 12
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

The AlgZ/R Two-Component System Is Responsible for Attenuation of Virulence in Pseudomonas aeruginosa

Williams, Danielle A 01 December 2017 (has links) (PDF)
Pseudomonas aeruginosa is an important opportunistic pathogen. Many P. aeruginosa virulence factors are regulated by the AlgZ/R two component system. AlgZ is the sensor histidine kinase which phosphorylates AlgR, the response regulator. AlgR activates transcription of different gene targets based upon its phosphorylation state. The genes that encode AlgZ and AlgR are transcribed in an operon. While regulation of algR expression has been well studied, regulation of algZ expression has not. Using a pilW mutant in concert with algZTF-lacZ transcriptional fusion, we conducted a transposon mutagenesis to identify algZ regulators. We identified an unknown autoregulatory loop. The type IV pilus minor pilins prevent the phosphorylation of AlgR by AlgZ . This inhibition of the AlgZ/R system subsequently down-regulates both the expression of the fimU operon and the algZ/R operon. Because AlgR regulates virulence, it is possible that virulence can also be reduced by targeting activation of the AlgZ/R system.
22

ROLE OF THE PSEUDOMONAS AERUGINOSA INNER MEMBRANE PROTEIN PILC IN TYPE IV PILUS FUNCTION

Takhar, Herlinder K. 10 1900 (has links)
<p>Type 4 pili (T4P) are fibrous appendages found on the surfaces of a wide range of bacteria. They are used for adherence to biotic and abiotic surfaces, twitching motility, and biofilm formation. Despite their ubiquitous distribution, identifying the core components required for T4P expression has been difficult due to conflicting data about the functions of orthologous components from the most common model organisms, <em>Neisseria</em> and <em>Pseudomonas</em>. By inactivating the retraction component of pilus function, genes essential for T4P assembly versus disassembly were discriminated in <em>P. aeruginosa</em>. In contradiction to data from the <em>Neisseria </em>system<em>,</em> we found that components of the inner membrane sub-complex consisting of PilN/O/P are not essential for surface pilus expression, while the highly conserved inner membrane protein, PilC is essential. The current model of T4P biogenesis suggests that PilC coordinates the activity of cytoplasmic extension (PilB) and retraction (PilT) ATPases via their interaction with its two large cytoplasmic domains. Hydrolysis of ATP by PilB or PilT is proposed to induce domain movements in PilC, resulting in the addition or removal of single pilin subunits from the base of the pilus. Using<em> </em><em>in vitro</em> co-affinity purification we showed that PilB is a potential interaction partner of the N-terminal cytoplasmic domain of PilC. Also, mutagenesis of the C-terminal cytoplasmic domain of PilC produced mutant proteins with a reduced capacity to support twitching motility, suggesting impairment of PilC-PilT interactions. The indispensability of PilC and its potential interactions with the ATPases PilB and PilT suggest that it is a core element required for function of the T4P system of <em>P. aeruginosa</em>.</p> / Master of Science (MSc)
23

Localization of Type IV Pilin Polymerization Proteins in Clostridium perfringens

Nikraftar, Sarah 13 January 2015 (has links)
Clostridium perfringens is a spore-forming anaerobic Gram-positive rod which has gliding motility through type IV Pili (TFP). Since the discovery of TFP in Gram-positive bacteria is relatively new, more studies are required to understand the mechanism and interaction of the proteins of this machinery. Moreover, the similarities between TFP and type 2 secretion system (T2SS) suggest that C. perfringens has also a T2SS. We studied the localization of TFP ATPases, PilB1, PilB2 and PilT in Bacillus subtilis to compare the localization in an organism other than C. perfringens and which lacks any known genes similar to TFP. Unlike the case in C. perfringens, PilB1 in B. subtilis localized to the poles in the absence of PilT, with some central foci at the future division sites. Colocalization of PilB1 was also studied with PilT and the results suggested that PilB1 needs PilT to migrate from the poles to the center. Localization of PilB2 in B. subtilis, was similar to the results in C. perfringens and to the localization of PilB1 in B. subtilis. We have not been able to co-express PilB2 with PilT yet. Succeeding in this study will help us better understand the interactions between PilB proteins and PilT. In another project, we studied a von Willebrand factor Type A-Domain Containing protein (vWA) which is secreted from C. perfringens strain 13. We overexpressed and purified this protein and tested the effects on mammalian cells. We found that the vWA is probably not a toxin but since it seems to bind to macrophage membranes, we propose that the vWA could be part of a toxin complex, probably the subunit of the complex that binds to the host cells. / Master of Science
24

Surface sensing for biofilm formation in Pseudomonas aeruginosa

Chang, Chien-Yi 01 September 2018 (has links)
Yes / Aggregating and forming biofilms on biotic or abiotic surfaces are ubiquitous bacterial behaviors under various conditions. In clinical settings, persistent presence of biofilms increases the risks of healthcare-associated infections and imposes huge healthcare and economic burdens. Bacteria within biofilms are protected from external damage and attacks from the host immune system and can exchange genomic information including antibiotic-resistance genes. Dispersed bacterial cells from attached biofilms on medical devices or host tissues may also serve as the origin of further infections. Understanding how bacteria develop biofilms is pertinent to tackle biofilm-associated infections and transmission. Biofilms have been suggested as a continuum of growth modes for adapting to different environments, initiating from bacterial cells sensing their attachment to a surface and then switching cellular physiological status for mature biofilm development. It is crucial to understand bacterial gene regulatory networks and decision-making processes for biofilm formation upon initial surface attachment. Pseudomonas aeruginosa is one of the model microorganisms for studying bacterial population behaviors. Several hypotheses and studies have suggested that extracellular macromolecules and appendages play important roles in bacterial responses to the surface attachment. Here, I review recent studies on potential molecular mechanisms and signal transduction pathways for P. aeruginosa surface sensing. / This work is supported by University of Bradford
25

The role of the Type IV pili system in the virulence of <i>Francisella tularensis</i>

Salomonsson, Emelie January 2008 (has links)
<p><i>Francisella tularensis</i> is a Gram-negative intracellular pathogen causing the zoonotic disease tularemia. <i>F. tularensis</i> can be found almost all over the world and has been recovered from several animal species, even though the natural reservoir of the bacterium and parts of its life cycle are still unknown. Humans usually get infected after handling infected animals or from bites of blood-feeding arthropod vectors. There are four subspecies of <i>F. tularensis</i>: the highly virulent <i>tularensis</i> (Type A) that causes a very aggressive form of the disease, with mortality as high as 60% if untreated, the moderately virulent <i>holarctica</i> (Type B) and <i>mediasiatica</i>, and the essentially avirulent subspecies <i>F. novicida</i>. So far, our knowledge of the molecular mechanisms that would explain these differences in virulence among the subspecies is poor. However, recent developments of genetic tools and access to genomic sequences have laid the ground for progress in this research field. Analysis of genome sequences have identified several regions that differ between <i>F. tularensis</i> subspecies. One of these regions, RD19, encodes proteins postulated to be involved in assembly of type IV pili (Tfp), organelles that have been implicated in processes like twitching motility, biofilm formation and cell-to-cell communication in pathogenic bacteria. While there have been reports of pili-like structures on the surface of <i>F. tularensis</i>, these have not been linked to the Tfp encoding gene clusters until now. Herein, I present evidence that the <i>Francisella</i> pilin, PilA, can complement pilin-like characteristics and promote assembly of fibers in a heterologous system in <i>Neisseria gonorrhoeae. pilA</i> was demonstrated to be required for full virulence of both type A and type B strains in mice when infected via peripheral routes. A second region, RD18, encoding a protein unique to <i>F. tularensis</i> and without any known function, was verified to be essential for virulence in a type A strain. Interestingly, the non-licensed live vaccine strain, LVS (Type B), lacks both RD18 and RD19 (<i>pilA</i>) due to deletion events mediated by flanking direct repeats. The loss of RD18 and RD19 is responsible for the attenuation of LVS, since re-introducing them <i>in cis</i> could restore the virulence to a level similar to a virulent type B strain. Significantly, these deletion events are irreversible, preventing LVS to revert to a more virulent form. Therefore, this important finding could facilitate the licensing of LVS as a vaccine against tularemia.</p>
26

The role of the Type IV pili system in the virulence of Francisella tularensis

Salomonsson, Emelie January 2008 (has links)
Francisella tularensis is a Gram-negative intracellular pathogen causing the zoonotic disease tularemia. F. tularensis can be found almost all over the world and has been recovered from several animal species, even though the natural reservoir of the bacterium and parts of its life cycle are still unknown. Humans usually get infected after handling infected animals or from bites of blood-feeding arthropod vectors. There are four subspecies of F. tularensis: the highly virulent tularensis (Type A) that causes a very aggressive form of the disease, with mortality as high as 60% if untreated, the moderately virulent holarctica (Type B) and mediasiatica, and the essentially avirulent subspecies F. novicida. So far, our knowledge of the molecular mechanisms that would explain these differences in virulence among the subspecies is poor. However, recent developments of genetic tools and access to genomic sequences have laid the ground for progress in this research field. Analysis of genome sequences have identified several regions that differ between F. tularensis subspecies. One of these regions, RD19, encodes proteins postulated to be involved in assembly of type IV pili (Tfp), organelles that have been implicated in processes like twitching motility, biofilm formation and cell-to-cell communication in pathogenic bacteria. While there have been reports of pili-like structures on the surface of F. tularensis, these have not been linked to the Tfp encoding gene clusters until now. Herein, I present evidence that the Francisella pilin, PilA, can complement pilin-like characteristics and promote assembly of fibers in a heterologous system in Neisseria gonorrhoeae. pilA was demonstrated to be required for full virulence of both type A and type B strains in mice when infected via peripheral routes. A second region, RD18, encoding a protein unique to F. tularensis and without any known function, was verified to be essential for virulence in a type A strain. Interestingly, the non-licensed live vaccine strain, LVS (Type B), lacks both RD18 and RD19 (pilA) due to deletion events mediated by flanking direct repeats. The loss of RD18 and RD19 is responsible for the attenuation of LVS, since re-introducing them in cis could restore the virulence to a level similar to a virulent type B strain. Significantly, these deletion events are irreversible, preventing LVS to revert to a more virulent form. Therefore, this important finding could facilitate the licensing of LVS as a vaccine against tularemia.
27

Diversity of Pseudomonas aeruginosa Type IV Pilins and Identification of a Novel D-arabinofuranose Post-translational Modification

Kus, Julianne 31 July 2008 (has links)
The opportunistic bacterial pathogen Pseudomonas aeruginosa uses type IV pili (T4P) for adherence to, and rapid colonization of, surfaces via twitching motility. T4P are formed from thousands of pilin (PilA) subunits. Two groups of P. aeruginosa pilins were described previously (I and II), distinguished by protein length and sequence. PilA_I was glycosylated with an O-antigen subunit through the action of PilO/TfpO, encoded downstream of pilA_I. To determine if additional pilin variants existed, analysis of the pilin locus of >300 P. aeruginosa strains from a variety of environments was conducted. Three additional pilin alleles were discovered, each of which was invariantly associated with a unique, previously unidentified, downstream gene(s): pilA_III+tfpY, pilAIV+tfpW+tfpX, pilA_V+tfpZ. This survey also revealed that strains with group I T4P were more commonly associated with respiratory infections than strains with other pilins, suggesting that glycosylated T4P may confer a colonization advantage in this environment. The newly identified group IV pilin, represented by strain Pa5196, migrated aberrantly through SDS-PA gels, suggesting it was also glycosylated, a hypothesis confirmed by periodic acid-Schiff staining and mass spectrometry (MS) analyses. Disruption of Pa5196 O-antigen biosynthesis did not prevent the production of glycosylated pilins, demonstrating that these pilins were modified in a novel manner, unlike group I pilins. Using MS, nuclear magnetic resonance spectroscopy and site-directed mutagenesis, the Pa5196 pilins were shown to be uniquely modified with homo-oligosaccharides of mycobacterial-like α-1,5-D-arabinofuranose at multiple locations. Residues Thr64 and Thr66, located on the αβ-loop region of the protein, appear to be the preferred, but not exclusive sites of modification, each being modified with up to four D-Araf sugars. This region of the pilin is partially surface-exposed in the pilus, therefore modification of these sites may influence the surface chemistry of the fibre. Residues Ser81, Ser82, Ser85 and Ser89, located in the β-strand region, were also modified, mainly with mono- and disaccharides. Bioinformatic analyses and mutagenesis of TfpW suggest that this novel protein is an arabinosyltransferase necessary for PilA_IV modification. This research has increased our understanding of the complexity of this virulence factor, and may aid in development of new therapeutics for P. aeruginosa and mycobacterial infections.
28

Diversity of Pseudomonas aeruginosa Type IV Pilins and Identification of a Novel D-arabinofuranose Post-translational Modification

Kus, Julianne 31 July 2008 (has links)
The opportunistic bacterial pathogen Pseudomonas aeruginosa uses type IV pili (T4P) for adherence to, and rapid colonization of, surfaces via twitching motility. T4P are formed from thousands of pilin (PilA) subunits. Two groups of P. aeruginosa pilins were described previously (I and II), distinguished by protein length and sequence. PilA_I was glycosylated with an O-antigen subunit through the action of PilO/TfpO, encoded downstream of pilA_I. To determine if additional pilin variants existed, analysis of the pilin locus of >300 P. aeruginosa strains from a variety of environments was conducted. Three additional pilin alleles were discovered, each of which was invariantly associated with a unique, previously unidentified, downstream gene(s): pilA_III+tfpY, pilAIV+tfpW+tfpX, pilA_V+tfpZ. This survey also revealed that strains with group I T4P were more commonly associated with respiratory infections than strains with other pilins, suggesting that glycosylated T4P may confer a colonization advantage in this environment. The newly identified group IV pilin, represented by strain Pa5196, migrated aberrantly through SDS-PA gels, suggesting it was also glycosylated, a hypothesis confirmed by periodic acid-Schiff staining and mass spectrometry (MS) analyses. Disruption of Pa5196 O-antigen biosynthesis did not prevent the production of glycosylated pilins, demonstrating that these pilins were modified in a novel manner, unlike group I pilins. Using MS, nuclear magnetic resonance spectroscopy and site-directed mutagenesis, the Pa5196 pilins were shown to be uniquely modified with homo-oligosaccharides of mycobacterial-like α-1,5-D-arabinofuranose at multiple locations. Residues Thr64 and Thr66, located on the αβ-loop region of the protein, appear to be the preferred, but not exclusive sites of modification, each being modified with up to four D-Araf sugars. This region of the pilin is partially surface-exposed in the pilus, therefore modification of these sites may influence the surface chemistry of the fibre. Residues Ser81, Ser82, Ser85 and Ser89, located in the β-strand region, were also modified, mainly with mono- and disaccharides. Bioinformatic analyses and mutagenesis of TfpW suggest that this novel protein is an arabinosyltransferase necessary for PilA_IV modification. This research has increased our understanding of the complexity of this virulence factor, and may aid in development of new therapeutics for P. aeruginosa and mycobacterial infections.
29

Regulation of Exopolysaccharide Production in Myxococcus Xanthus

Black, Wesley P. 06 January 2006 (has links)
The surface gliding motility of Myxococcus xanthus is required for a multicellular developmental process initiated by unfavorable growth conditions. One form of the M. xanthus surface motility, social (S) gliding, is mediated by the extension and retraction of polarly localized type IV pili (Tfp). Besides Tfp, exopolysaccharides (EPS), another cell surface associated component, are also required for M. xanthus S motility. Previous studies demonstrated that the Dif chemotaxis-like signal transduction pathway is central to the regulation of EPS production in M. xanthus. Specifically, difA, difC and difE mutants were found to be defective in EPS production and S motility. DifA, DifC and DifE, homologous to methyl-accepting chemotaxis proteins (MCPs), CheW and CheA, respectively, are therefore positive regulators of EPS. This study, undertaken to better understand the regulation of EPS production, led to a few major findings. First, DifD and DifG, homologous to CheY and CheC, respectively, were found to be negative regulators of EPS production. Both DifD and DifG likely function upstream of the DifE kinase in EPS regulation. DifB, which has no homology to known chemotaxis proteins, was found not to be involved in EPS production. Secondly, this study led to the recognition that Tfp likely function upstream of the Dif pathway in the regulation of EPS production. Extracellular complementation experiments suggest that Tfp may act as sensors instead of signals for the Dif chemotaxis-like pathway. We propose a regulatory feedback loop that couples EPS production with Tfp function through the Dif signaling proteins. Lastly, we sought to identify additional genes involved in EPS production. Our efforts identified a mutation in a separate chemotaxis gene cluster as a suppressor of difA mutations, suggesting potential cross-talks among the multiple chemotaxis-like pathways in M. xanthus. In addition, we identified twenty-five previously uncharacterized genes that are predicted to be involved in M. xanthus EPS production. These genes appear to encode additional EPS regulators and proteins with biosynthetic function. / Ph. D.
30

Type III Secretion Mediated Translocation of Effector Exoenzymes by Pseudomonas aeruginosa / Injektion av gifter via typ III sekretionssystemet hos bakterien Pseudomonas aeruginosa

Sundin, Charlotta January 2003 (has links)
No description available.

Page generated in 0.084 seconds