Spelling suggestions: "subject:"tyrosine kinase""
21 |
Innovations thérapeutiques non vasodilatatrices dans l'hypertension artérielle pulmonaire / Non vasodilator therapeutic innovations in pulmonary arterial hypertensionChaumais, Marie-Camille 13 June 2012 (has links)
L’hypertension artérielle pulmonaire (HTAP) correspond à un groupe de maladies qui se caractérise par une obstruction vasculaire suite à une vasoconstriction excessive, une prolifération cellulaire et la création de thromboses in situ, conduisant à une augmentation progressive des résistances vasculaires pulmonaires puis au décès. De nombreuses avancées dans la prise en charge de l’HTAP ont été réalisées ces dernières années avec la mise à disposition de médicaments principalement vasodilatateurs. Cependant, aucun de ces médicaments n’est curatif de la maladie témoignant de la nécessité à obtenir de nouvelles thérapeutiques. Des molécules axant leur effet sur la lutte contre la prolifération cellulaire liée à l’activation des récepteurs à tyrosine-kinases (RTK) ou le stress oxydant (SO) paraissent aujourd’hui comme de potentielles innovations thérapeutiques dans l’HTAP. Cependant, à l’heure actuelle, les données sur le SO dans l’HTAP sont trop peu détaillées pour cibler correctement cette voie physiopathologique. De même, les inhibiteurs de tyrosine-kinases ont montré un bénéfice dans la prise en charge de l’HTAP mais associé à des effets indésirables graves tels qu’une toxicité cardiaque. Dans ce travail, nous avons approfondi le mécanisme d’action du SO dans la physiopathologie de l’HTAP et complété l’identification des RTK dans le remodelage vasculaire pulmonaire afin de permettre la mise au point de thérapeutiques efficaces avec un rapport bénéfice risque favorable pour le patient. / Pulmonary arterial hypertension (PAH) corresponds to a group of diseases characterized by a vascular obstruction due to vasoconstriction, cellular proliferation and in situ thrombosis, leading to a progressive increase in pulmonary vascular resistances. New knowledge in the PAH management were performed in the last few years, specifically for vasodilators. However, none of those treatments cure the disease and new drugs are still needed. Molecules targeting cellular proliferation induced by tyrosine kinases receptors (TKR) activation or oxidative stress (OS) seem to be potential therapeutic innovations. However, knowledge on OS in PAH is not enough accomplished in PAH to target accurately this pathophysiologic pathway. Similarly, tyrosine kinase inhibitors have shown efficacy in PAH management but associated with severe adverse events as cardiac toxicity. In this study, mechanism of action of OS in pathophysiology of PAH was detailed and identification of TKR involved in vascular remodeling was completed in order to find efficient therapeutics with a favorable risk benefit ratio for PAH patient.
|
22 |
Expression and Mutation Analyses of Candidate Cancer Genes In SituKiflemariam, Sara January 2012 (has links)
Cancers display heterogeneity in genetic profiles of the individual cancer cells and in the composition of different malignant and non-malignant cell populations. Such intra-tumor heterogeneity plays a role in treatment response and the emergence of resistance to cancer therapies. Approaches that address this complexity and improve stratification of patients for treatment are therefore highly warranted. Thus, the aims of this thesis were to further develop and apply in situ technologies for expression and mutation analyses of candidate cancer genes to gain a deeper understanding of cancer biology and to study intra-tumor heterogeneity. In paper I, we established and validated a procedure for scalable in situ hybridization of large gene sets in human formalin-fixed paraffin-embedded tissues for analysis of gene expression. This method was used in paper II for large-scale expression analysis of the tyrosine kinome and phosphatome, two gene families whose members are frequently mutated in many forms of cancers. Systematic, compartment-specific expression mapping at cell type resolution enabled us to identify several novel vascular markers that have gone unnoticed in bulk transcriptomic analyses. In papers III and IV, we used padlock probes for in situ mutation detection in single cells for studies of genetic intra-tumor heterogeneity. In paper III, multiplex detection and genotyping of oncogenic point mutations was demonstrated in routinely processed tissue materials, whereas in paper IV we further the application by demonstrating multiplex detection of fusion gene transcripts. Collectively, the work presented in this thesis employs in situ-based methods to obtain spatial resolution of gene expression and mutation patterns in normal and cancer tissues, thereby broadening our understanding of the cancer genome.
|
23 |
Modulation of Kir3 by lipids and tyrosine phosphorylation /Rogalski, Sherri Lynn. January 2000 (has links)
Thesis (Ph. D.)--University of Washington, 2000. / Vita. Includes bibliographical references (leaves 108-119).
|
24 |
Rôle de FAK (Focal Adhesion Kinase) dans le turnover des points d'adhérence durant la migration cellulaireHamadi, Abdelkader Rondé, Philippe January 2008 (has links) (PDF)
Thèse de doctorat : Pharmacologie moléculaire et cellulaire : Strasbourg 1 : 2008. / Titre provenant de l'écran-titre. Bibliogr. p. 197-221.
|
25 |
Functional domain contributions to signaling specificity between the non-receptor tyrosine kinases c-src and c-yesSummy, Justin Matthew. January 2001 (has links)
Thesis (Ph. D.)--West Virginia University, 2001. / Title from document title page. Document formatted into pages; contains vi, 195 p. : ill. (some col.). Vita. Includes abstract. Includes bibliographical references (p. 182-190).
|
26 |
Mechanism of the cross talk between growth hormone receptor and epidermal growth factor receptorLi, Xin. January 2008 (has links) (PDF)
Thesis (Ph.D.)--University of Alabama at Birmingham, 2008. / Title from PDF title page (viewed on Feb. 18, 2010). Includes bibliographical references.
|
27 |
Design of synthetic peptides that display cell binding and signaling sequences on calcium phosphate surfaces /Gilbert, Michele. January 2001 (has links)
Thesis (Ph. D.)--University of Washington, 2001. / Vita. Includes bibliographical references (leaves 180-209).
|
28 |
Interleukin-21 (IL-21), a novel IL-2-related cytokine that modulates pro-mitogenic signaling by the IL-2 receptor /Habib, Tania J. January 2003 (has links)
Thesis (Ph. D.)--University of Washington, 2003. / Vita. Includes bibliographical references (leaves 102-112).
|
29 |
Bullwinkle encodes a SOX transcription factor and interacts with Bicaudal-C and shark to regulate multiple processes in Drosophila melanogaster oogenesis /Tran, David Huu, January 2003 (has links)
Thesis (Ph. D.)--University of Washington, 2003. / Vita. Includes bibliographical references (leaves 147-158).
|
30 |
Abl Family Kinases Regulate Endothelial FunctionChislock, Elizabeth Marie January 2013 (has links)
<p>The vasculature has a crucial function in normal physiology, enabling the transport of oxygen and nutrients to cells throughout the body. In turn, endothelial cells, which form the inner-most lining of blood vessels, are key regulators of vascular function. In addition to forming a barrier which separates the circulation from underlying tissues, endothelial cells respond to diverse extracellular cues and produce a variety of biologically-active mediators in order to maintain vascular homeostasis. Disruption of normal vascular function is a prominent feature of a variety of pathological conditions. Thus, elucidating the signaling pathways regulating endothelial function is critical for understanding the role of endothelial cells in both normal physiology and pathology, as well as for potential development of therapeutic interventions.</p><p>In this dissertation, we use a combination of pharmacological inhibition and knockdown studies, along with generation of endothelial conditional knockout mice, to demonstrate an important role of the Abelson (Abl) family of non-receptor tyrosine kinases (Abl and Arg) in vascular function. Specifically, loss of endothelial expression of the Abl kinases leads to late-stage embryonic and perinatal lethality in conditional knockout mice, indicating a crucial requirement for Abl/Arg kinases in normal vascular development and function. Endothelial <italic>Abl</italic>/<italic>Arg</italic>-null embryos display focal regions of vascular loss and tissue damage, as well as increased endothelial cell apoptosis. An important pro-survival function for the Abl kinases is further supported by our finding that either microRNA-mediated <italic>Abl</italic>/<italic>Arg</italic> depletion or pharmacological inhibition of the Abl kinases increases endothelial cell susceptibility to stress-induced apoptosis <italic>in vitro</italic>. The Abl kinases are activated in response to treatment with the pro-angiogenic growth factors vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF). We show that both VEGF- and bFGF-mediated endothelial cell survival is impaired following Abl kinase inhibition.</p><p>These studies have uncovered a previously unappreciated role for the Abl kinases in the regulation of the angiopoietin/Tie2 signaling pathway, which functions to support endothelial cell survival and vascular stability. Loss of Abl/Arg expression leads to reduced mRNA and protein levels of the Tie2 receptor, resulting in impaired activation of intracellular signaling pathways by the Tie2 ligand angiopoietin-1 (Angpt1), as well as decreased Angpt1-mediated endothelial cell survival following serum-deprivation stress. Notably, we found that the Abl kinases are activated following Angpt1 stimulation, suggesting a unique dual role for Abl and Arg in Angpt/Tie2 signaling, potentially modulating Tie2 downstream signaling responses, as well as regulating Tie2 receptor expression.</p><p>Further, we show an important contribution of the Abl family kinases to the regulation of endothelial permeability responses both <italic>in vitro</italic> and <italic>in vivo</italic>. The Abl kinases are activated in response to a diverse group of permeability-inducing factors, including VEGF and the inflammatory mediators thrombin and histamine. We show that inhibition of Abl kinase activity, using either the ATP-competitive inhibitor imatinib or the allosteric inhibitor GNF-2, protects against disruption of endothelial barrier function by the permeability-inducing factors <italic>in vitro</italic>. VEGF-induced vascular permeability similarly is decreased in conditional knockout mice lacking endothelial Abl expression, as well as following treatment with Abl kinase inhibitors <italic>in vivo</italic>. Mechanistically, we show that loss of Abl kinase activity is accompanied by activation of the barrier-stabilizing GTPases (guanosine triphosphatases) Rac1 and Rap1, as well as inhibition of agonist-induced Ca<super>2+</super> mobilization and generation of acto-myosin contractility.</p><p>Taken together, these results demonstrate involvement of the Abl family kinases in the regulation of endothelial cell responses to a broad range of pro-angiogenic and permeability-inducing factors, as well as a critical requirement for the endothelial Abl kinases in normal vascular development and function <italic>in vivo</italic>. These findings have implications for the clinical use of Abl kinase inhibitors.</p> / Dissertation
|
Page generated in 0.0663 seconds