• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 286
  • 269
  • 116
  • 111
  • 87
  • 82
  • 73
  • 68
  • 64
  • 61
  • 59
  • 57
  • 57
  • 55
  • 55
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Tissue-dependent T Cell Apoptosis and Transcriptional Regulation of Memory CD8+T Cell Differentiation During Viral Infections: A Dissertation

Kapoor, Varun N. 10 December 2013 (has links)
Activation and proliferation of antigen-specific T cells is the hallmark of an anti-viral immune response. Effector T cells generated during an immune response are heterogeneous in regards to their ability to populate the memory pool once the immune response has resolved. Initial T cell activation takes place in the lymphoid organs, after which T cells migrate into the non-lymphoid tissues. The presence of memory T cells at non-lymphoid tissue sites has been shown to be critical for protection against secondary virus challenge. Our lab has previously demonstrated that during and after the resolution of the immune response to Lymphocytic choriomeningitis virus (LCMV) CD8+T cells in the nonlymphoid tissues are more resistant to apoptosis than those in the lymphoid organs. This stability of T cells in the non-lymphoid tissues may be critical in ensuring protection against a secondary virus challenge. Mechanisms regulating tissue-dependent differences in CD8+T cell apoptosis were studied in an acute LCMV infection model. Virus-specific CD8+T cells from lymphoid (spleen, mesenteric lymph nodes (MLN), inguinal lymph nodes (ILN)) and non-lymphoid tissues (peritoneal exudate cells (PEC), fat-pads) were compared for expression of surface antigenic markers known to correlate with a memory phenotype. Non-lymphoid tissues were enriched in IL-7Rhi, KLRG-1lo, CD27hi and CXCR3hi virus-specific CD8+ T cells, and the presence of these antigenic markers correlated with increased memory potential and survival. Transcription factors in addition to cell surface antigens were assessed as correlates of resistance to apoptosis. Virus-specific CD8+T cells in the nonlymphoid tissues were enriched in cells expressing T cell factor-1 (TCF-1), which correlated with increased memory potential and survival. CD8+T cells in the peritoneum of TCF-1-deficient mice had decreased survival during resolution of the immune response to LCMV, suggesting a role for TCF-1 in promoting survival in the non-lymphoid tissues. As an additional mechanism, I investigated whether apoptosis-resistant CD8+T cells migrate to non-lymphoid tissues and contribute to tissue-dependent apoptotic differences. CXCR3+ CD8+T cells resisted apoptosis and accumulated in the lymph nodes of mice treated with FTY720, which blocks the export of lymph node cells into the peripheral tissues. The PECs expressed increased amounts of CXCR3 ligands, CXCL9 and CXCL10, which may have recruited the non-apoptotic cells from the lymph nodes. By adoptively transferring splenic T cells into the spleen or PEC environment I showed that the peritoneal environment through a yet undefined factor promoted survival of CD8+T cells. In this study I have elucidated the mechanisms by which CD8+T cells preferentially survive in the non-lymphoid tissues. I found that non-lymphoid tissues were enriched in memory-phenotype CD8+T cells which were intrinsically resistant to apoptosis irrespective of the tissue environment. Furthermore, apoptosisresistant CD8+T cells may preferentially migrate into the non-lymphoid tissues where the availability of tissue-specific factors may enhance memory cell survival. Few transcription factors have been identified that regulate CD8+T cell effector-memory differentiation during an immune response. In this thesis, I have also studied the mechanism by which the transcription factor Blimp-1 regulates the generation of effector and memory CD8+T cells. Blimp-1 is known to repress a large number of target genes, and ChIP (chromatin immunoprecipitation) sequencing analysis done by Dr. HyunMu Shin in the lab of Dr. Leslie J. Berg identified CD25 (IL-2Rα) and CD27 as potential targets of Blimp-1. I found that Blimp-1-deficient CD8+T cells had sustained expression of CD25 (IL-2Rα) and CD27 during peak and resolution of the immune response to LCMV. By performing adoptive transfers of CD25hi and CD27hi CD8+T cells I showed that CD25 and CD27 expression on CD8+T cells during resolution of the immune response correlates with enhanced survival. Silencing Il2rα and Cd27 expression reduced the Blimp-1-deficient CD8+T cell response, suggesting that sustained expression of CD25 and CD27 was in part responsible for the enhanced CD8+T cell response seen in the Blimp-1-deficient mice. Furthermore, our collaborator Dr. HyunMu Shin showed that CD25 and CD27 are direct targets of Blimp-1, and that Blimp-1 recruits histone modifying enzymes to Il2rα and Cd27 loci to suppress their expression during the peak of the anti-viral immune response. This study identifies one of the mechanisms by which Blimp-1 regulates the balance between generation of effector and memory CD8+T cells. In this thesis work I also studied the function of the transcription factor ROG (Repressor of GATA-3) in regulating in vivo T cell responses during both acute and chronic LCMV infection. ROG-deficient mice had increased CD8+T cell responses during an acute LCMV infection. ROG deficiency also led to the generation of memory T cells with an enhanced recall response compared to WT controls. By using LCMV-specific P14+ TCR transgenic ROG-deficient CD8+T cells these defects were shown to be T cell intrinsic. ROG-deficient mice had enhanced CD8+T cell responses and viral clearance during a persistent high dose LCMV Clone 13 infection. During chronic LCMV infection ROG-deficient mice also had increased lung pathology and mortality. The results indicate that ROG negatively regulates T cell responses and memory generation during both acute and chronic LCMV infection. The studies highlighted in this thesis elucidate the mechanisms promoting CD8+T cell survival in non-lymphoid tissues as well as transcription factormediated regulation of memory CD8+T cell differentiation. Knowledge of this will help us better understand T cell immunity after infections and may eventually help develop better vaccines.
102

Complex Roles of Macrophages in Lipid Metabolism and Metabolic Disease: A Dissertation

Negrin, Kimberly A. 16 April 2014 (has links)
The worldwide prevalence of obesity and metabolic disease is increasing at an exponential rate and current projections provide no indication of relief. This growing burden of obesity-related metabolic disorders, including type 2 diabetes mellitus (T2DM), highlights the importance of identifying how lifestyle choices, genetics and physiology play a role in metabolic disease and place obese individuals at a greater risk for obesity-related complications including insulin resistance (IR). This increased risk of IR, which is characterized by a decreased response to insulin in peripheral tissues including adipose tissue (AT) and liver, is associated with a chronic, low grade inflammatory state; however, the causative connections between obesity and inflammation remains in question. Experimental evidence suggests that adipocytes and macrophages can profoundly influence obesity-induced IR because adipocyte dysfunction leads to ectopic lipid deposition in peripheral insulin sensitive tissues, and obese AT is characterized by increased local inflammation and macrophage and other immune cell populations. Attempts to delineate the individual roles of macrophage-derived pro-inflammatory cytokines, like tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β), have demonstrated causative roles in impaired systemic insulin sensitivity, adipocyte function and hepatic glucose and lipid metabolism in obese animal models. Thus, the attenuation of macrophage-derived inflammation is an evolving area of interest to provide insight into the underlying mechanism(s) leading to obesity-induced IR. Thus, in the first chapter of this thesis, I describe experiments to refine the current paradigm of obesity-induced AT inflammation by combining gene expression profiling with computational analysis of two anatomically distinct AT depots, visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) to address whether the inflammatory signature of AT is influenced by diet-induced obesity (DIO). Microarray and qRT-PCR analysis data revealed that DIO mouse SAT is resistant to high fat diet (HFD)-induced inflammation and macrophage infiltration, and our data support the current model of obesity-induced visceral adipose tissue macrophage (VATM) enrichment. Our data demonstrated robust increases in VAT pro-inflammatory cytokine expression, which are consistent with the significant increases in macrophage-specific gene expression and consistent with previous reports in which VAT inflammation is enhanced and attributed to classically activated (M1) macrophage infiltration. However, these data are only observed relative to the expression of invariant housekeeping gene expression. When M1-specific genes are expressed relative to macrophage-specific standards like F4/80 expression, these inflammatory makers are unchanged. These data indicate that the changes in the overall inflammatory profile of DIO mouse VAT is because of quantitative changes in adipose tissue macrophage (ATM) number and not qualitative changes in activation state. These observations are consistent with the idea that infiltrating ATMs may have roles other than the previously described role in mediating inflammation in obese adipose tissue. Hepatic IR occurs partly as a consequence of adipocyte dysfunction because the liver becomes a reservoir for AT-derived fatty acids (FAs), which leads to obesity-related non-alcoholic fatty liver disease (NAFLD). In the second part of my thesis, I used clodronate liposome-mediated macrophage depletion to define the role of macrophages in hepatic lipid metabolism regulation. We discovered that i.p. administration of clodronate liposomes depletes Kupffer cells (KCs) in ob/ob mice without affecting VATM content, whereas clodronate liposomes depletes both KCs and VATMs in DIO mice. To this end, we established that clodronate liposome-mediated KC depletion, regardless of VATM content in obese mice, abrogated hepatic steatosis by reducing hepatic de novo lipogenic gene expression. The observed reductions in hepatic inflammation in macrophage-depleted obese mice led to the hypothesis that IL-1β may be responsible for obesity-induced increased hepatic triglyceride (TG) accumulation. We determined that IL-1β treatment increases fatty acid synthase (Fas) protein expression and TG accumulation in primary mouse hepatocytes. Pharmacological inhibition of interleukin-1 (IL-1) signaling by interleukin-1 receptor antagonist (IL-1Ra) administration recapitulated these results by reducing hepatic TG accumulation and lipogenic gene expression in DIO mice. Thus, these data highlight the importance of the inflammatory cytokine IL-1β in obesity-driven hepatic steatosis and suggests that liver inflammation controls hepatic lipogenesis in obesity. To this end, the studies described herein provide new insight and appreciation to the multi-functional nature of macrophages and clinical implications for anti-inflammatory therapy in obesity and NAFLD treatment. We demonstrate the complexities of macrophage-mediated functions in insulin sensitive tissues and a role for obesity-induced inflammatory cytokine IL-1β in hepatic lipid metabolism modulation, which is reversed via IL-1Ra intervention. The use of anti-inflammatory therapy to ameliorate obesity-associated NAFLD was perhaps the most important contribution to this body of work and is full of promise for future clinical application. It is likely that the future of therapeutics will be multi-faceted and combine therapeutic approaches to enhance glucose tolerance and overall health in obese, IR and T2DM patients.
103

rAAV-Mediated Gene Transfer For Study of Pathological Mechanisms and Therapeutic Intervention in Canavan's Disease: A Dissertation

Ahmed, Seemin Seher 01 December 2014 (has links)
Canavan’s Disease is a fatal Central Nervous System disorder caused by genetic defects in the enzyme – aspartoacylase and currently has no effective treatment options. We report additional phenotypes in a stringent preclinical aspartoacylase knockout mouse model. Using this model, we developed a gene therapy strategy with intravenous injections of the aspartoacylase gene packaged in recombinant adeno associated viruses (rAAVs). We first investigated the CNS gene transfer abilities of rAAV vectors that can cross the blood-brain-barrier in neonatal and adult mice and subsequently used different rAAV serotypes such as rAAV9, rAAVrh.8 and rAAVrh.10 for gene replacement therapy. A single intravenous injection rescued lethality, extended survival and corrected several disease phenotypes including motor dysfunctions. For the first time we demonstrated the existence of a therapeutic time window in the mouse model. In order to limit off-target effects of viral delivery we employed a synthetic strategy using microRNA mediated posttranscriptional detargeting to restrict rAAV expression in the CNS. We followed up with another approach to limit peripheral tissue distribution. Strikingly, we demonstrate that intracerebroventricular administration of a 50-fold lower vectors dose can rescue lethality and extend survival but not motor functions. We also study the contributions of several peripheral tissues in a primarily CNS disorder and examine several molecular attributes behind pathogenesis of Canavan’s disease using primary neural cell cultures. In summary, this thesis describes the potential of novel rAAV-mediated gene replacement therapy in Canavan’s disease and the use of rAAVs as a tool to tease out its pathological mechanism.
104

Neural Orchestration of the C. elegans Escape Response: A Dissertation

Clark, Christopher M. 24 October 2014 (has links)
How does a nervous system orchestrate compound behaviors? Finding the neural basis of behavior requires knowing which neurons control the behavior and how they are connected. To accomplish this we measured and manipulated neural activity in a live, behaving animal with a completely defined connectome. The C. elegans escape response is a compound behavior consisting of a sequence of behavioral motifs. Gentle touch induces a reversal and suppression of head movements, followed by a deep turn allowing the animal to navigate away from the stimulus. The connectome provides a framework for the neural circuit that controls this behavior. We used optical physiology to determine the activity patterns of individual neurons during the behavior. Calcium imaging of locomotion interneurons and motor neurons reveal unique activity profiles during different motifs of the escape response. Furthermore, we used optogenetics and laser ablations to determine the contribution of individual neurons to each motif. We show these that the suppression of head movements and turning motifs are distinct motor programs and can be uncoupled from the reversal. The molecular mechanisms that regulate these motifs involve from signaling with the neurotransmitter tyramine. Tyramine signaling and gap junctions between locomotion interneurons and motor neurons regulate the temporal orchestration of the turning motif with the reversal. Additionally, tyramine signaling through a GPCR in GABAergic neurons facilitates the asymmetric turning during forward viii locomotion. The combination of optical tools and genetics allows us to dissect a how a neural circuit converts sensory information into a compound behavior.
105

Sensing of Endogenous Nucleic Acids by the Innate Immune System during Viral Infection: A Dissertation

Schattgen, Stefan A. 30 March 2015 (has links)
Innate sensing of nucleic acids lies at the heart of antiviral host defense. However, aberrant activation of innate sensors by host nucleic acids can also lead to the development of autoimmune diseases. Such host nucleic acids can also be released from stressed, damaged or dying cells into the tissue microenvironment. It however remains unclear how the extracellular nucleic acids impacts the quality of the host immune responses against viral infections. Using a mouse model of influenza A virus (IAV) infection, we uncovered an important immune-regulatory pathway that tempers the intensity of the host-response to infection. We found that host-derived DNA from necrotic cells accumulates in the lung microenvironment during IAV infection, and is sensed by the DNA receptor Absent in Melanoma 2 (AIM2). AIM2-deficiency resulted in severe immune pathology highlighted by enhanced recruitments of immune cells, and excessive systemic inflammation after IAV challenge, which led to increased morbidity and lethality in IAV-infected mice. Interestingly, these effects of AIM2 were largely independent of its ability to mediate IL-1β maturation through inflammasome complexes. Finally, ablation of accumulated DNA in the lung by transgenic expression of DNaseI in vivo had similar effects. Collectively, our results identify a novel mechanism of cross talk between PRR pathways, where sensing of hostderived nucleic acids limits immune mediated damage to virus infected tissues.
106

Cell Size Control in the Fission Yeast Schizosaccharomyces pombe: A Dissertation

Keifenheim, Daniel L. 17 June 2015 (has links)
The coordination between cell growth and division is a highly regulated process that is intimately linked to the cell cycle. Efforts to identify an independent mechanism that measures cell size have been unsuccessful. Instead, we propose that size control is an intrinsic function of the basic cell cycle machinery. My work shows that in the fission yeast Schizosaccharomyces pombe Cdc25 accumulates in a size dependent manner. This accumulation of Cdc25 occurs over a large range of cell sizes. Additionally, experiments with short pulses of cycloheximide have shown that Cdc25 is an inherently unstable protein that quickly returns to a size dependent equilibrium in the cell suggesting that Cdc25 concentration is dependent on size and not time. Thus, Cdc25 can act as a sizer for the cell. However, cells are still viable when Cdc25 is constitutively expressed suggesting that there is another sizer in the case that Cdc25 expression is compromised. Cdc13 is a likely candidate due to the similar characteristics to Cdc25 and the ability to activate Cdc2. Cdc13 accumulates during the cell cycle in a manner similar to Cdc25. I show that in the absence of Cdc2 tyrosine phosphorylation, the cell size is sensitive to Cdc13 activity showing that Cdc13 accumulation can determine when cells enter mitosis. These results suggest a two sizer model where Cdc25 is the main sizer with Cdc13 acting as a backup sizer in the event of Cdc25 expression is compromised. Additionally, in the absence of Cdc2 phosphorylation by the kinases Wee1 and Mik1, mitotic entry is regulated by the activity of Cdc2. In the absence of Cdc2 phosphorylation, this activity is regulated by binding of cyclins to Cdc2. Under these circumstances, the activity of Cdc13 can regulate mitotic entry provide further evidence that Cdc13 could be a sizer of the cell in the case where Cdc25 expression is compromised. The results I present in this dissertation provide the groundwork for understanding how cells regulate size and how this size regulation affects cell cycle control in S. pombe . The results show how the intrinsic cell cycle machinery can act as a sizer for the G2/M transition in S. pombe . Interestingly, this mitotic commitment pathway is well conserved suggesting a general solution for size control in eukaryotes at the G2/M transition. Understanding the mechanism of how protein concentration is regulated in a size dependent manner will give much needed insight into how cells control size. Elucidating the mechanism for size control will capitalize on decades of research and deepen our understanding of basic cell biology.
107

A Gene-Centered Method For Mapping 3’UTR-RBP Interactions: A Dissertation

Tamburino, Alex M. 04 August 2015 (has links)
Interactions between 3´ untranslated regions (UTRs) and RNA-binding proteins (RBPs) play critical roles in post-transcriptional gene regulation. Metazoan genomes encode hundreds of RBPs and thousands of 3’ UTRs have been experimentally identified, yet the spectrum of interactions between 3´UTRs and RBPs remains largely unknown. Several methods are available to map these interactions, including protein-centered methods such as RBP immunoprecipitation (RIP) and cross-link immunoprecipitation (CLIP), yeast three-hybrid assays and RNAcompete. However, there is a paucity of RNA-centered approaches for assaying an RNA element of interest against multiple RBPs in a parallel, scalable manner. Here, I present a strategy for delineating protein-RNA interaction networks using a gene centered approach. This approach includes annotating RBPs and identifying physical interactions between an RNA of interest and these RBPs using the Protein-RNA Interaction Mapping Assay (PRIMA). Few RBPs have been experimentally determined in most eukaryotic organisms. Therefore I show that existing RBP annotations can be supplemented using computational predictions of RNA binding domains (RBD) from protein sequences. A single RNA of interest can be tested using PRIMA against a library of RBPs constructed from these annotations. PRIMA utilizes the green fluorescent protein (GFP) in yeast as a reporter. PRIMA is based on reconstitution of the interaction between the 5´ and 3´ ends of an mRNA, which increases mRNA stability and enhances translation. PRIMA recapitulates known and uncovers new interactions involving RBPs from human, Caenorhabditis elegans and bacteriophage with short RNA fragments and full-length 3´UTRs. The development of RBP prey libraries will enable the testing of 3´UTRs against the hundreds of RBPs, which is essential to gain broad insights into post-transcriptional gene regulation at a systems level.
108

Identification and Characterization of MicroRNA Modulators in Caenorhabditis Elegans: A Dissertation

Ren, Zhiji 26 February 2016 (has links)
MicroRNAs (miRNAs) are endogenous non-coding small RNAs that posttranscriptionally regulate gene expression primarily through binding to the 3’ untranslated region (3’UTR) of target mRNAs, and are known to play important roles in various developmental and physiological processes. The work presented in this thesis was centered on understanding how Caenorhabditis elegans miRNAs are modulated by genetic, environmental, or physiological factors and how these small RNAs function to maintain the robustness of developmental processes under stressful conditions. To identify modulators of the miRNA pathway, I developed sensitized genetic backgrounds that consist of a panel of miRNA gene mutants and miRNA biogenesis factor mutants with partially penetrant phenotypes. First, I found that upon infection of Caenorhabditis elegans with Pseudomonas aeruginosa, an opportunistic pathogen of diverse plants and animals, let-7 family miRNAs are engaged in reciprocal regulatory interactions with the p38 MAPK innate immune pathway to maintain robust developmental timing despite the stress of pathogen infection. These let-7 family miRNAs, along with other developmental timing regulators, are also integrated into innate immune regulatory networks to modulate immune responses. Next, I demonstrated that loss-of-function mutations of Staufen (stau-1), a double-stranded RNA-binding protein, increase miRNA activity for several miRNA families, and this negative modulation of Staufen on miRNA activity acts downstream of miRNA biogenesis, possibly by competing with miRNAs for binding to target mRNA 3’UTRs. In summary, these studies provide a better understanding on how miRNAs are modulated by various environmental and cellular components, and further support the role of the miRNA pathway in conferring robustness to developmental processes under these perturbations.
109

Helper T Cell Differentiation in DNA-Immunized Mice: A Dissertation

Feltquate, David Marc 01 April 1998 (has links)
DNA immunization, inoculation with an antigen-expressing plasmid DNA, is a new method for generating an antigen-specific immune response. At the time these investigations began, very little was known about the immune response produced by DNA vaccines. Thus, the first aim of our studies was to perform a detailed examination of the antibody response generated by DNA immunization with an influenza hemagglutinin (HA)-expressing DNA in BALB/c mice. Using several different routes and methods of DNA immunization, we observed a number of findings. Although all three forms of DNA immunization elicited strong anti-HA antibody responses, i.m. and i.d. saline DNA immunization required approximately 100 times more DNA than a gene gun DNA immunization to raise an equivalent titer of anti-HA antibody. Indeed, as little as one inoculation and one boost by gene gun of 0.0004 μg of DNA produced a measurable antibody response in 50% of mice. Unexpectedly, we found the isotype of the antibody response differed among groups of mice immunized by different forms of DNA immunization. Intramuscular and i.d. saline DNA immunization produced predominantly an IgG2a anti-HA antibody response, whereas gene gun DNA immunization elicited mostly an IgG1 anti-HA antibody response. Considering that IgG2a and IgG1 antibody isotypes were known to correlate with Th1 and Th2 immune responses, respectively, we analyzed the type of immune responses produced by i.m., i.d., and gene gun DNA immunization. We found that i.m. and i.d. saline DNA immunization produced a Th1 predominant cellular immune response. In contrast, gene gun DNA immunization produced a Th2 cellular immune response. The differences in the type of immune responses were found to be due to the method of DNA immunization, and not due to the route of DNA inoculation. A gene gun DNA immunization of muscle produced the same IgG1, Th2 immune response as a gene gun DNA immunization of skin, while a saline DNA immunization of muscle and skin produced mostly an IgG2a, Th1 immune response. Each method of DNA immunization created good memory Th cell responses. The type of immune response created by an initial DNA immunization remained fixed even after multiple boosts with the identical method of DNA immunization, following a boost with the alternative method of DNA immunization, or after a viral challenge. The differentiation of naive Th cells into Th1 or Th2 cells depends on a variety of factors. We performed many experiments to elucidate which factors played a role in the generation of Th1 or Th2 immune responses following saline DNA immunization and gene gun DNA immunization. DNA dose response studies revealed the use of different doses of DNA between groups of saline DNA and gene gun DNA immunized mice did not account for the differentiation of distinct Th cell subsets. Cytokine production inducible by a number of factors inherently associated with either saline DNA or gene gun DNA immunization did not affect Th differentiation. For instance, contamination of plasmid DNA with lipopolysaccharide did not account for differences in the immune response. Immunostimulatory CpG sequences did not affect Th differentiation following DNA immunization, but they did enhance the IgG2a antibody response to coinoculated HA protein. Finally, cotransfection of IFNγ or IL-4 expressing plasmids with an HA-expressing plasmid by gene gun inoculation or as a saline DNA injection did not shift the type of immune response in a Th1 or Th2 direction, respectively. Thus, it appeared that increased cytokine stimulation was not responsible for selective Th subset differentiation. One factor related to the method of DNA immunization did seem to correlate with Th1 differentiation. Deposition of plasmid DNA extracellulary by saline DNA injections (as opposed to intracellular DNA delivery by gene gun) may have stimulated Th1 immune responses. Manipulating a gene gun DNA immunization to deliver DNA to the dermis (and thus extracellularly) shifted the immune response from that of a Th2 type to a mixed Th1/Th2 type. Furthermore, evidence was gathered demonstrating that pDNA can interact with cell surface molecules and that specific sequences in pDNA can act as a ligand and bind to molecules. Taken together, our data led us to propose a new model for Th1 differentiation following saline DNA immunization. We believe extracellular pDNA binds to an APC cell surface molecule which activates the cell. The activated APC preferentially stimulates naive Th cells to differentiate into Th1 cells. Finally, studies using a variety of mice differing in their genetic backgound and MHC genotype demonstrated the generality of our findings regarding i.m. saline DNA inoculations of an HA-expressing pDNA. Saline DNA immunization produced IgG2a, Th1-predominant immune responses independent of the genetic background and MHC genotype of the mice. In contrast, the type of immune response elicited by a gene gun DNA immunization was dependent on the MHC genotype of mice. Thus the type of immune response produced by gene gun DNA immunization probably depends on the specific antigen (and its effect on MHC-peptide/TcR interaction and signaling) and is less likely due to any inherent feature associated with the process of gene gun DNA delivery.
110

Runx Expression in Normal and Osteoarthritic Cartilage: Possible Functions of Runx Proteins in Chondrocytes: A Dissertation

LeBlanc, Kimberly T. 28 February 2013 (has links)
The Runx family of transcription factors supports cell fate determination, cell cycle regulation, global protein synthesis control, and genetic as well as epigenetic regulation of target genes. Runx1, which is essential for hematopoiesis; Runx2, which is required for osteoblast differentiation; and Runx3, which is involved in neurologic and gut development; are expressed in the growth plate during chondrocyte maturation, and in the chondrocytes of permanent cartilage structures. While Runx2 is known to control genes that contribute to chondrocyte hypertrophy, the functions of Runx1 and Runx3 during chondrogenesis and in cartilage tissue have been less well studied. The goals of this project were to characterize expression of Runx proteins in articular cartilage and differentiating chondrocytes and to determine the contribution of Runx1 to osteoarthritis (OA). Here, the expression pattern of Runx1 and Runx2 was characterized in normal bovine articular cartilage. Runx2 is expressed at higher levels in deep zone chondrocytes, while Runx1 is primarily expressed in superficial zone chondrocytes, which is the single cell layer that lines the surface of articular cartilage. Based on this finding, the hypothesis was tested that Runx1 is involved in osteoarthritis, which is a disease characterized by degradation of articular cartilage and changes in chondrocytes. These studies showed that Runx1 is upregulated in articular cartilage explants in response to mechanical compression. Runx1 was also expressed in chondrocytes found at the periphery of OA lesions in the articular cartilage of mice that underwent an OA-inducing surgery. Runx1 was also upregulated in cartilage explants of human osteoarthritic knees, and IHC data showed that Runx1 is mainly expressed in chondrocyte “clones” characteristic of OA. To ascertain the potential function of the upregulation of Runx1 in these cartilage stress conditions and disease states, the hypothesis was tested that Runx1 is upregulated in very specific chondrocyte populations in response to the cartilage damage in osteoarthritis. These studies addressed the properties of these cells that related to functions in cell growth and differentiation. In both the surface layer of normal articular cartilage, and in OA cartilage, Runx1 expression by IF co-localized with markers of mesenchymal progenitor cells, as well as markers of proliferation Ki-67 and PCNA. This finding indicated that Runx1 is found in a population of cells that represent a proliferative population of mesenchymal progenitor cells in osteoarthritis. To further address Runx1 function and identify downstream targets of Runx proteins, a promoter analysis of genes that are known to be either downregulated or upregulated during chondrocyte maturation was done. These studies found that many of these genes have 1 or more Runx binding sites within 2kb of their transcription start site, indicating that they are potential downstream Runx target genes. Lastly, some preliminary experiments were done to characterize novel roles of Runx proteins in the chondrocyte. Runx proteins have been shown to epigenetically regulate their target genes by remaining bound to them throughout mitosis, “poising” them for transcription upon exit from mitosis. The hypothesis that Runx proteins also function by remaining bound to their target genes throughout mitosis in chondrocytes was tested. It was demonstrated by immunofluorescense imaging of Runx proteins on metaphase chromosomes of ATDC5 cells, that Runx2 remains bound to chromosomes during mitosis. Cell proliferation and hypertrophy are both linked to increases in protein synthesis. Runx factors, which regulate rates of global protein synthesis, are expressed in both proliferating and hypertrophic chondrocytes. Thus, it was hypothesized that Runx proteins regulate rates of global protein synthesis during chondrocyte maturation. These studies showed that the overexpression of Runx proteins in a chondrocyte cell line (ATDC5) did not affect protein synthesis rates or levels of protein synthesis machinery. Additionally, Runx proteins did not affect proliferation rates in this chondrocyte cell line.

Page generated in 0.0422 seconds