• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 1
  • Tagged with
  • 13
  • 11
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Low Energy Photon Detection

Guo, Tianyi 01 January 2023 (has links) (PDF)
Detecting long wave infrared (LWIR) light at room temperature has posed a persistent challenge due to the low energy of photons. The pursuit of an affordable, high-performance LWIR camera capable of room temperature detection has spanned several decades. In the realm of contemporary LWIR detectors, they can be broadly classified into two categories: cooled and uncooled detectors. Cooled detectors, such as MCT detectors, excel in terms of high detectivity and fast response times. However, their reliance on cryogenic cooling significantly escalates their cost and restricts their practical applications. In contrast, uncooled detectors, exemplified by microbolometers, are capable of functioning at room temperature and come at a relatively lower cost. Nonetheless, they exhibit somewhat lower detectivity and slower response times. Within the scope of this work, I will showcase two innovative approaches aimed at advancing the next generation of LWIR detectors. These approaches are designed to offer high detectivity, swift response times, and room temperature operation. The first approach involves harnessing Dirac plasmon and the Seebeck effect in graphene to create a photo-thermoelectric detector. In addition, I will introduce the application of scanning near-field microscopy for revealing the plasmons generated in graphene, employing both imaging and spectroscopy techniques. The second approach entails the use of an oscillating circuit integrated with phase change materials and the modulation of frequency induced by infrared illumination to achieve LWIR detection. Finally, I will present the progress made in integrating graphene-based detectors in this work onto readout circuits to enable the development of dense pixel focal plane array.
2

Uncooled Infrared Focal Plane Arrays With Integrated Readout Circuitry Using Mems And Standard Cmos Technologies

Eminoglu, Selim 01 January 2003 (has links) (PDF)
This thesis reports the development of low-cost uncooled microbolometer focal plane arrays (FPAs) together with their integrated readout circuitry for infrared night vision applications. Infrared microbolometer detectors are based on suspended and thermally isolated p+-active/n-well diodes fabricated using a standard 0.35 &micro / m CMOS process followed by a simple post-CMOS bulk-micromachining process. The post-CMOS process does not require any critical lithography or complicated deposition steps / and therefore, the FPA cost is reduced considerably. The integrated readout circuitry is developed specially for the p+-active/n-well diode microbolometers that provides lower input referred noise voltage than the previously developed microbolometer readout circuits suitable for the diode type microbolometers. Two FPAs with 64 &times / 64 and 128 &times / 128 array formats have been implemented together with their low-noise integrated readout circuitry. These FPAs are first of their kinds where such large format uncooled infrared FPAs are designed and fabricated using a standard CMOS process. The fabricated detectors have a temperature coefficient of -2 mV/K, a thermal conductance value of 1.55 &times / 10-7 W/K, and a thermal time constant value of 36 ms, providing a measured DC responsivity (&amp / #8476 / ) of 4970 V/W under continuous bias. The measured detector noise is 0.69 &micro / V in 8 kHz bandwidth, resulting a measured detectivity (D*) of 9.7 &times / 108 cm&amp / #8730 / Hz/W. The 64 &times / 64 FPA chip has 4096 pixels scanned by an integrated 16-channel parallel readout circuit composed of low-noise differential transconductance amplifiers, switched capacitor integrators, and sample-and-hold circuits. It measures 4.1 mm &times / 5.4 mm, dissipates 25 mW power, and provides an estimated NETD value of 0.8 K at 30 frames/sec (fps) for an f/1 optics. The measured uncorrected voltage non-uniformity for the 64 &times / 64 array after the CMOS fabrication is 0.8 %, which is reduced further down to 0.2 % for the 128 &times / 128 array using an improved FPA structure that can compensate for the fixed pattern noise due to the FPA routing. The 128 &times / 128 FPA chip has 16384 microbolometer pixels scanned by a 32-channel parallel readout circuitry. The 128 &times / 128 FPA measures 6.6 mm &times / 7.9 mm, includes a PTAT temperature sensor and a vacuum sensor, dissipates 25 mW power, and provides an estimated NETD value of 1 K at 30 fps for an f/1 optics. These NETD values can be decreased below 350 mK with further optimization of the readout circuit and post-CMOS etching steps. Hence, the proposed method is very cost-effective to fabricate large format focal plane arrays for very low-cost infrared imaging applications.
3

Electrical Noise in Colossal Magnetoresistors and Ferroelectrics

Lisauskas, Alvydas January 2001 (has links)
No description available.
4

Electro-Thermal Mechanical Modeling of Microbolometer for Reliability Analysis

Effa, Dawit (David) 12 September 2010 (has links)
Infrared (IR) imaging is a key technology in a variety of military and civilian applications, especially for night vision and remote sensing. Compared with cryogenically cooled IR sensors, uncooled infrared imaging devices have the advantages of being low cost, light weight, and superior reliability. The electro-thermal analysis of a microbolometer pixel is critical to determine both device performance and reliability. To date, most microbolometer analysis research has focused on performance optimization and computation of thermal conductance directly from the geometry. However, modeling of the thermal distribution across the microbolometer pixel is critical for the comprehensive analysis of system performance and reliability. Therefore, this thesis investigates the electro-thermo-mechanical characteristics of a microbolometer pixel considering the effects of joule heating and incoming IR energy. The contributions of the present research include the electro-thermal models for microbolometer and methods of validating thermal distribution using experimental results. The electro-thermal models explain the effect of microbolometer material properties and geometry on device performance and reliability. The research also contributes methods of estimating the thermal conductivity of microbolometer, which take into account different heat transfer mechanisms, including radiation and convection. Previous approaches for estimating the thermal conductance of uncooled microbolometer consider heat conduction via legs from the geometry of the pixel structure and material properties [2]. This approach assumes linear temperature distribution in the pixel legs structure. It also leaves out the various electro-thermal effects existing for multilayer structures. In the present research, a different approach is used to develop the thermal conductance of microbolometer pixel structure. The temperature distribution in the pixel is computed from an electro-thermal model. Then, the average temperature in the pixel microplate and the total heat energy generated by joule heating is utilized to compute the thermal conductance of the structure. The thesis discusses electro-thermal and thermo-mechanical modeling, simulation and testing of Polysilicon Multi-User MEMS Process (PolyMUMPs®) test devices as the groundwork for the investigation of microbolometer performance and reliability in space applications. An electro-thermal analytical and numerical model was developed to predict the temperature distribution across the microbolometer pixel by solving the second order differential heat equation. To provide a qualitative insight of the effect of different parameters in the thermal distribution, including material properties and device geometry, first an explicit formulation for the solution of the electro-thermal coupling is obtained using the analytical method. In addition, the electro-thermal model, which accounts for the effect of IR energy and radiation heat transfer, spreading resistance and transient conditions, was studied using numerical methods. In addition, an analytical model has been developed to compute the IR absorption coefficient of a Thin Single Stage (TSS) microbolometer pixel. The simulation result of this model was used to compute absorbed IR energy for the numerical model. Subsequently, the temperature distribution calculated from the analytical model is used to obtain the deflections that the structure undergoes, which will be fundamental for the reliability analysis of the device. Finite element analysis (FEA) has been simulated for the selected device using commercial software, ANSYS® multiphysics. Finite element simulation shows that the electro-thermal models predict the temperature distribution across a microbolometer pixel at steady-state conditions within 2.3% difference from the analytical model. The analytical and numerical models are also simulated and results for a temperature distribution within 1.6% difference. In addition, to validate the analytical and numerical electro-thermal and thermo-mechanical models, a PolyMUMPs® test device has been used. The test results showed a close agreement with the FEM simulation deflection of the test device.
5

High Performance Readout Electronics For Uncooled Infrared Detector Arrays

Yildirim, Omer Ozgur 01 September 2006 (has links) (PDF)
This thesis reports the development of high performance readout electronics for resistive microbolometer detector arrays that are used for uncooled infrared imaging. Three different readout chips are designed and fabricated by using a standard 0.6 &micro / m CMOS process. Fabricated chips include a conventional capacitive transimpedance amplifier (CTIA) type readout circuit, a novel readout circuit with dynamic resistance nonuniformity compensation capability, and a new improved version of the CTIA circuit. The fabricated CTIA type readout circuit uses two digital-to-analog converters (DACs) with multiple analog buses which compensate the resistance nonuniformity by adjusting the bias currents of detector and reference resistors. Compensated detector current is integrated by a switched capacitor integrator with offset cancellation capability followed by a sample-and-hold circuit. The measured detector referred current noise is 47.2 pA in an electrical bandwidth of 2.6 KHz, corresponding to an expected SNR of 530. The dynamic nonuniformity compensation circuit uses a feedback structure that dynamically changes the bias currents of the reference and detector resistors. A special feature of the circuit is that it provides continuous compensation for the detector and reference resistances due to temperature changes over time. Test results of the fabricated circuit show that the circuit reduces the offset current due to resistance nonuniformity 42.5 times. However, the calculated detector referred current noise is 360 pA, which limits the circuit SNR to 70. The improved CTIA type readout circuit introduces a new detector biasing method by using an additional auxiliary biasing transistor for better current controllability. The improved readout circuit alleviates the need for high resolution compensation DACs, which drastically decreases the circuit area. The circuit occupies an area of one seventh of the first design. According to test results, the current compensation ratio is 170, and the detector referred current noise is 48.6 pA in a 2.6 KHz bandwidth.
6

Electrical Noise in Colossal Magnetoresistors and Ferroelectrics

Lisauskas, Alvydas January 2001 (has links)
No description available.
7

Electro-Thermal Mechanical Modeling of Microbolometer for Reliability Analysis

Effa, Dawit (David) 12 September 2010 (has links)
Infrared (IR) imaging is a key technology in a variety of military and civilian applications, especially for night vision and remote sensing. Compared with cryogenically cooled IR sensors, uncooled infrared imaging devices have the advantages of being low cost, light weight, and superior reliability. The electro-thermal analysis of a microbolometer pixel is critical to determine both device performance and reliability. To date, most microbolometer analysis research has focused on performance optimization and computation of thermal conductance directly from the geometry. However, modeling of the thermal distribution across the microbolometer pixel is critical for the comprehensive analysis of system performance and reliability. Therefore, this thesis investigates the electro-thermo-mechanical characteristics of a microbolometer pixel considering the effects of joule heating and incoming IR energy. The contributions of the present research include the electro-thermal models for microbolometer and methods of validating thermal distribution using experimental results. The electro-thermal models explain the effect of microbolometer material properties and geometry on device performance and reliability. The research also contributes methods of estimating the thermal conductivity of microbolometer, which take into account different heat transfer mechanisms, including radiation and convection. Previous approaches for estimating the thermal conductance of uncooled microbolometer consider heat conduction via legs from the geometry of the pixel structure and material properties [2]. This approach assumes linear temperature distribution in the pixel legs structure. It also leaves out the various electro-thermal effects existing for multilayer structures. In the present research, a different approach is used to develop the thermal conductance of microbolometer pixel structure. The temperature distribution in the pixel is computed from an electro-thermal model. Then, the average temperature in the pixel microplate and the total heat energy generated by joule heating is utilized to compute the thermal conductance of the structure. The thesis discusses electro-thermal and thermo-mechanical modeling, simulation and testing of Polysilicon Multi-User MEMS Process (PolyMUMPs®) test devices as the groundwork for the investigation of microbolometer performance and reliability in space applications. An electro-thermal analytical and numerical model was developed to predict the temperature distribution across the microbolometer pixel by solving the second order differential heat equation. To provide a qualitative insight of the effect of different parameters in the thermal distribution, including material properties and device geometry, first an explicit formulation for the solution of the electro-thermal coupling is obtained using the analytical method. In addition, the electro-thermal model, which accounts for the effect of IR energy and radiation heat transfer, spreading resistance and transient conditions, was studied using numerical methods. In addition, an analytical model has been developed to compute the IR absorption coefficient of a Thin Single Stage (TSS) microbolometer pixel. The simulation result of this model was used to compute absorbed IR energy for the numerical model. Subsequently, the temperature distribution calculated from the analytical model is used to obtain the deflections that the structure undergoes, which will be fundamental for the reliability analysis of the device. Finite element analysis (FEA) has been simulated for the selected device using commercial software, ANSYS® multiphysics. Finite element simulation shows that the electro-thermal models predict the temperature distribution across a microbolometer pixel at steady-state conditions within 2.3% difference from the analytical model. The analytical and numerical models are also simulated and results for a temperature distribution within 1.6% difference. In addition, to validate the analytical and numerical electro-thermal and thermo-mechanical models, a PolyMUMPs® test device has been used. The test results showed a close agreement with the FEM simulation deflection of the test device.
8

Developing thermal infrared imaging systems for monitoring spatial crop temperatures for precision agriculture applications

Mangus, Devin January 1900 (has links)
Master of Science / Department of Biological & Agricultural Engineering / Ajay Sharda / Precise water application conserves resources, reduces costs, and optimizes plant performance and quality. Existing irrigation scheduling utilizes single, localized measurements that do not account for spatial crop water need; but, quick, single-point sensors are impractical for measuring discrete variations across large coverage areas. Thermography is an alternate approach for measuring spatial temperatures to quantify crop health. However, agricultural studies using thermography are limited due to previous camera expense, unfamiliar use and calibration, software for image acquisition and high-throughput processing specifically designed for thermal imagery mapping and monitoring spatial crop water need. Recent advancements in thermal detectors and sensing platforms have allowed uncooled thermal infrared (TIR) cameras to become suited for crop sensing. Therefore, a small, lightweight thermal infrared imaging system (TIRIS) was developed capable of radiometric temperature measurements. One-time (OT) and real-time (RT) radiometric calibrations methods were developed and validated for repeatable, temperature measurements while compensating for strict environmental conditions within a climate chamber. The Tamarisk® 320 and 640 analog output yielded a measurement accuracy of ±0.82°C or 0.62ºC with OT and RT radiometric calibration, respectively. The Tamarisk® 320 digital output yielded a measurement accuracy of ±0.43 or 0.29ºC with OT and RT radiometric calibration, respectively. Similarly, the FLIR® Tau 2 analog output yielded a measurement accuracy of ±0.87 or 0.63ºC with OT and RT radiometric calibration, respectively. A TIRIS was then built for high-throughput image capture, correction, and processing and RT environmental compensation for monitoring crop water stress within a greenhouse and temperature mapping aboard a small unmanned aerial systems (sUAS). The greenhouse TIRIS was evaluated by extracting plant temperatures for monitoring full-season crop water stress index (CWSI) measurements. Canopy temperatures demonstrated that CWSI explained 82% of the soil moisture variation. Similarly, validation aboard a sUAS provided radiometric thermal maps with a ±1.38°C (α=0.05) measurement accuracy. Due to the TIR cameras’ performance aboard sUAS and greenhouse platforms, a TIRIS provides unparalleled spatial coverage and measurement accuracy capable of monitoring subtle crop stress indicators. Further studies need to be conducted to produce spatial crop water stress maps at scales necessary for variable rate irrigation systems.
9

A Low-cost Uncooled Infrared Detector Array And Its Camera Electronics

Akcoren, Dincay 01 February 2011 (has links) (PDF)
This thesis presents the development of integrated readout electronics for diode type microbolometers and development of external camera electronics for microbolometers. The developed readout electronics are fabricated with its integrated 160x120 resolution FPA (Focal Plane Array) in the XFAB SOI-CMOS 1.0 &mu / m process. The pixels in the FPA have 70 &mu / m pixel pitch, and they are sensitive in the 8&ndash / 12 &mu / m band of the infrared spectrum. Each pixel has 4 serially connected diodes, and diode turn on voltage changes as the temperature of the suspended and thermally isolated pixel increases due to the absorbed infrared power. Suspension of the pixels is obtained with a post-CMOS MEMS etching process, but this process requires no critical litography and/or deposition steps. This dramatically reduces the detector process cost, which makes this microbolometer FPA suitable for ultra low-cost applications such as automobile, security, and commercial applications. The readout electronics of the FPA include digital blocks such as timing and programming blocks as well as analog blocks such as a differential trans-conductance amplifier, a switched capacitor integrator, a sampleand- hold, and current DACs. This new readout design has reduced number of pins to simplify the external electronics and allows wafer-level vacuum packaging compared to the 128x128 FPA developed in a previous study at METU with the same approach. Both of these features further decrease the cost. Two kinds of external camera electronics are developed for two SOI type microbolometers. The first one is for the 128x128 SOI microbolometer previously designed in METU. The developed external camera electronics have 1.5mVrms noise, which is much less than the microbolometer noise. The overall system has an average NETD of 465 mK and a peak NETD of 320mK. The second developed external camera electronics are for the 160x120 SOI microbolometers that developed in the scope of this thesis. The developed external camera electronics has 0.55mVrms noise which is much less than the bolometer noise which is 5mVrms. The overall system has an average NETD of 820 mK and a peak NETD of 350 mK. Each of these external camera electronics include a custom designed PCB, an FPGA board with appropiate configurion and a software working on a PC. The custom designed PCB holds the external components for the microbolometer, an FPGA takes and processes the bolometer data and it sends to a PC, and a PC processes these data and forms a streaming video. These two external camera electronics allow to obtain human images verifying that the developed microbolometers can be used for security and automotive applications.
10

Infrared face recognition

Lee, Colin K. 06 1900 (has links)
Approved for public release, distribution is unlimited / This study continues a previous face recognition investigation using uncooled infrared technology. The database developed in an earlier study is further expanded to include 50 volunteers with 30 facial images from each subject. The automatic image reduction method reduces the pixel size of each image from 160 120 to 60 45 . The study reexamines two linear classification methods: the Principal Component Analysis (PCA) and Fisher Linear Discriminant Analysis (LDA). Both PCA and LDA apply eigenvectors and eigenvalues concepts. In addition, the Singular Value Decomposition based Snapshot method is applied to decrease the computational load. The K-fold Cross Validation is applied to estimate classification performances. Results indicate that the best PCA-based method (using all eigenvectors) produces an average classification performance equal to 79.22%. Incorporated with PCA for dimension reduction, the LDA-based method achieves 94.58% accuracy in average classification performance. Additional testing on unfocused images produces no significant impact on the overall classification performance. Overall results again confirm uncooled IR imaging can be used to identify individual subjects in a constrained indoor environment. / Lieutenant, United States Navy

Page generated in 0.0519 seconds