• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Predictive Modeling for Ductile Machining of Brittle Materials

Venkatachalam, Sivaramakrishnan 12 October 2007 (has links)
Brittle materials such as silicon, germanium, glass and ceramics are widely used in semiconductor, optical, micro-electronics and various other fields. Traditionally, grinding, polishing and lapping have been employed to achieve high tolerance in surface texture of silicon wafers in semiconductor applications, lenses for optical instruments etc. The conventional machining processes such as single point turning and milling are not conducive to brittle materials as they produce discontinuous chips owing to brittle failure at the shear plane before any tangible plastic flow occurs. In order to improve surface finish on machined brittle materials, ductile regime machining is being extensively studied lately. The process of machining brittle materials where the material is removed by plastic flow, thus leaving a crack free surface is known as ductile-regime machining. Ductile machining of brittle materials can produce surfaces of very high quality comparable with processes such as polishing, lapping etc. The objective of this project is to develop a comprehensive predictive model for ductile machining of brittle materials. The model would predict the critical undeformed chip thickness required to achieve ductile-regime machining. The input to the model includes tool geometry, workpiece material properties and machining process parameters. The fact that the scale of ductile regime machining is very small leads to a number of factors assuming significance which would otherwise be neglected. The effects of tool edge radius, grain size, grain boundaries, crystal orientation etc. are studied so as to make better predictions of forces and hence the critical undeformed chip thickness. The model is validated using a series of experiments with varying materials and cutting conditions. This research would aid in predicting forces and undeformed chip thickness values for micro-machining brittle materials given their material properties and process conditions. The output could be used to machine brittle materials without fracture and hence preserve their surface texture quality. The need for resorting to experimental trial and error is greatly reduced as the critical parameter, namely undeformed chip thickness, is predicted using this approach. This can in turn pave way for brittle materials to be utilized in a variety of applications.
2

A Vibro-Acoustic Study of Vehicle Suspension Systems : Experimental and Mathematical Component Approaches

Lindberg, Eskil January 2013 (has links)
The objective of the present work is to study the vehicle suspension as a vibro-acoustic system of high complexity, consisting of many sub-systems with fundamentally different acoustical properties. In a parallel numerical and experimental modelling effort, important contributions to the understanding of its behaviour have been achieved. These findings are based on a balance between component investigations and global modelling of the complete system; they have been formulated for the transmission of both tyre-road excitation and friction-induced vibrations in the brake system. Initially an experimental study was conducted on a full vehicle test rig studying the broadband interior brake noise problem of, here named, roughness noise. The purpose of the study was twofold: first, to determine if the transmission from the source to the interior of the vehicle was structure-borne; second, to study the complexity of the suspension as a vibro-acoustic system. Parameters a_ecting the vibro-acoustic source were varied to gain understanding of the source mechanisms. This experimental study laid the foundation of the first part of this thesis (paper A) and provided the directions for the second part, the development of a mathematical modelling approach (paper B and C). In these two papers, methods for analysing the complex vibro-acoustic transfer of structure-borne sound in a vehicle suspension system were developed. The last part was then focussed on the wheel rim influence on the vibro-acoustic behaviour (paper D) of the suspension system. As a whole, the work clearly demonstrates that it is possible to conduct component studies of subsystems in the vehicle suspension system; and from these component studies it is possible draw conclusions that very well may avoid severe degradations in the interior noise of future vehicle generations. / <p>QC 20130503</p>
3

Identification et modélisation du torseur des actions de coupe en fraisage

Albert, Gaëtan 13 December 2010 (has links)
Les procédés de mise en forme par enlèvement de matière introduisent, lors de la formation du copeau,des phénomènes complexes et rendent difficiles la maîtrise des grandeurs énergétiques. Des mesuresréalisées à l’aide d’un dynamomètre à six composantes permettent de mieux appréhender ces phénomènes.Ce dynamomètre permet de mesurer l’ensemble des actions mécaniques transmises par la liaison mécaniqueentre la matière usinée (copeau et pièce) et l’outil de coupe. Les mesures révèlent alors la présence demoments, à la pointe de l’outil, non évalués par les modèles de coupe classiques. Cependant, les lois decomportement actuelles ne permettent pas d’exprimer complètement ces phénomènes complexes (gradientsde déformations) lors de la formation du copeau. Actuellement, une modélisation analytique ou numérique etrendant compte de ces phénomènes est donc exclue. Des approches expérimentales ont alors été menées entournage et en perçage. Aujourd’hui ces recherches s’étendent au cas du fraisage.Pour ceci, un nouveau dynamomètre à six composantes adapté au fraisage a été conçu, réalisé etétalonné. Une démarche expérimentale a alors été mise en place afin de modéliser le moment de coupeconsommateur de puissance. Ce moment est alors étudié dans une configuration de coupe orthogonale enfraisage. Un modèle expérimental du moment de coupe est alors proposé. Cette modélisation fait intervenir lasection de copeau réelle instantanée et un nouveau critère énergétique : la densité de moment. Une étude surles paramètres cinématiques réels de l’outil montre la nécessité de prendre en compte la section de copeauinstantanée réelle. Celle–ci est alors calculée à partir de la position réelle de l’outil déduite des donnéescinématiques extraites des codeurs de position des axes et de la broche de la machine outil. Les paramètresinfluents sur la densité de moment ont été mis en évidence par un plan d’expériences et une analyse de lavariance. Une modélisation de ce critère similaire aux coefficients spécifiques de coupe a par la suite étédéveloppée.Enfin, le bilan énergétique de l’opération de coupe étudiée est considéré. Une démarche pratiqued’évaluation rapide de la puissance maximale de coupe est présentée en intégrant la modélisation du momentproposée. L’intérêt et l’importance de la prise en compte du moment de coupe sont alors confirmés pourprédire et définir les énergies mises en jeu par le processus de coupe. / In the cutting process, during the chip formation, complex phenomena occur and the control of theenergy parameters is difficult. Information about these phenomena are given with the measurement of the sixcomponents of the mechanical actions. This dynamometer allows to measure the six mechanical actions (3forces and 3 moments) between the chip, the workpiece and the tool during the chip formation. Themeasurement of the moments at the tooth tip is not inclued in the classical cutting model.However, actual behaviour laws cannot express all the phenomena occurred during the chip formation.Thus, analytical or numerical cutting model taking into account these phenomena is not possible. Previousstudies have been performed in turning and drilling and allow to extend these works to milling.A new six components dynamometer suitable to milling have been designed and calibrated. Anexperimental approach is proposed in order to model the cutting moment involved in the cutting energybalance. The study is performed in orthogonal cutting configurations. A model of cutting moment is proposedand depends on the instantaneous undeformed chip section and a new criteria : the moment density. A studyon real kinematic parameters shows that the instantaneous undeformed chip section have to take intoaccount. The instantaneous undeformed chip section is computed with real position of the tool obtained withthe encoders of linear axes and spindle of the CNC Machine. Design of experiments and variance analysis haveshown influent parameters on the moment density. A model of the moment, close to specific pressurecoefficient, has been developed.Finally, the cutting energy balance of the milling operation used is studied. A practical approach includedthe moment model allow an accurately evaluation of the energy balance. In milling operation, the studyconfirms the cutting moment at the tool tip and shows the necessity to take into account moments in theenergy balance.
4

Micro e nanousinagem dos materiais frágeis / Micro e nanomachining of brittle materials

Marcel Henrique Militão Dib 10 December 2018 (has links)
Materiais frágeis, tal como o silício, têm sido utilizados em sistemas microeletromecânicos, semicondutores e dispositivos ópticos infravermelhos. Estes materiais são considerados de difícil usinabilidade devido à tendência de sofrerem fraturas. O grande desafio na usinagem dos materiais cristalinos é alcançar uma remoção de material por deformações plásticas (regime dúctil), pois, nessas condições as superfícies ópticas usinadas são geradas sem nenhum dano. Esse regime de usinagem pode ser alcançado em escalas submicrométricas, de forma que, em muitos cristais, as pressões impostas pela ferramenta são altas o suficiente para conduzirem uma transformação de fase do material, favorecendo, assim, a usinagem. Embora pesquisas sobre a relação entre a endentação e a usinagem tenham sido desenvolvidas, a busca por métodos matemáticos com base nas forças e deformações de endentação para serem usados em usinagem de modo a identificar as condições ótimas para remoção de material em regime dúctil não são triviais. O presente trabalho propõe uma relação mais direta com os resultados de endentação para determinar os parâmetros ótimos de usinagem dos materiais frágeis, correlacionando a área da face do endentador em contato e a área efetiva da secção de corte em usinagem. Para isso, ensaios de endentação e experimentos de usinagem com ferramenta de diamante foram realizados em escala micro e nanométrica. O material analisado aqui foi o silício monocristalino (100). Uma matriz experimental foi planejada para as possíveis correlações da variação do ângulo de saída da ferramenta e do avanço de usinagem com as áreas de endentação e o surgimento das trincas e fraturas; forças de usinagem e a pressão de transição frágil-dúctil; tensão residual; espessura crítica de corte e o estado das superfícies usinadas. Em relação às durezas obtidas, foi preciso separá-las em dois estágios: antes do surgimento das trincas durante a endentação e depois desse ponto. Durante a usinagem, a melhor remoção de material em regime dúctil foi obtida na direção mais dura do silício. Os ângulos de saída que proporcionaram resultados desfavoráveis em termos de integridade superficial foram o de -25° e ângulos mais negativos que -60°. A pressão de transição se apresentou de 12 GPa a 13 GPa, sendo que as energias específicas de corte seguiram o mesmo comportamento: 9 j/mm³ a 10 j/mm³ respectivamente. A tensão residual se mostrou inversamente proporcional às forças de usinagem. As espessuras crítica-efetivas de corte variaram de 100 nm a 560 nm. Os valores das espessuras críticas de corte estimadas pelos ensaios de endentação variaram de 200 nm a 530 nm. Portanto, foi possível mostrar que os valores de espessura crítica estimados pelo método proposto, com base nos resultados de endentação, corresponderam muito bem às espessuras críticas obtidas nos experimentos de usinagem. Assim sendo, torna-se possível determinar por meio de tal técnica os valores ótimos de usinagem, podendo ser aplicada para qualquer material cristalino. / Brittle materials, such as silicon, have been used in microelectromechanical systems, semiconductor and infrared optical devices. These types of materials are considered of difficult to machine due to the tendency to suffer fractures. The great challenge in the machining of crystalline materials is to achieve a removal of material by plastic deformations (ductile regime), because in these conditions the machined optical surfaces are generated without any superficial damage. This type of machining can be achieved on a submicrometric machining scale, so that the pressures imposed by the tool are high and lead to a phase transformation of many crystals favoring the machining in ductile regime. Although research on the relationship between microindentation and micromachining has been developed, the search for mathematical methods based on the forces and the deformations of indentation to be used in machining in order to identify the machining conditions under regime ductile are non-trivial. The present work proposes a more direct relationship with the results of the indentation to determine the optimal parameters of the fragile materials, correlating the indenter face area and the cutting section effective area in machining. For this purpose, indentation tests and diamond tool machining experiments were carried out on a micro and nanometric scale. The material analyzed here was monocrystalline silicon (100). An experimental matrix was planned for the possible correlations of the variation of the tool rake angle and of the machining feed with the areas of indentation and the beginning of cracks and fractures; cutting forces and the fragile-ductile transition pressure; residual stress; critical cutting thickness and the state of machined surfaces. In relation to the hardness obtained, it was necessary to separate them in two stages: before the emergence of the cracks during the indentation and after that point. During machining, the best removal of ductile material was obtained in the hardest direction of the silicon. The rake angles which gave unfavorable results in terms of surface integrity were -25° and angles more negative than -60°. The transition pressure reached values from 12 GPa to 13 GPa, and the specific shear energies followed the same behavior: 9 j/mm³ at 10 j/mm³ respectively. The residual stress was inversely proportional to the machining forces. Critical-effective uncut thicknesses ranged from 100 nm to 560 nm. The values of the critical uncut thicknesses estimated by the indentation tests ranged from 200 nm to 530 nm. Therefore, it was possible to show that the critical thickness values estimated by the proposed method, based on indentation results, corresponded very well to the critical thickness obtained in the machining experiments. Thus, it is possible to determine by means of such a technique the optimum values of machining, which can be applied to crystalline material.
5

Micro e nanousinagem dos materiais frágeis / Micro e nanomachining of brittle materials

Dib, Marcel Henrique Militão 10 December 2018 (has links)
Materiais frágeis, tal como o silício, têm sido utilizados em sistemas microeletromecânicos, semicondutores e dispositivos ópticos infravermelhos. Estes materiais são considerados de difícil usinabilidade devido à tendência de sofrerem fraturas. O grande desafio na usinagem dos materiais cristalinos é alcançar uma remoção de material por deformações plásticas (regime dúctil), pois, nessas condições as superfícies ópticas usinadas são geradas sem nenhum dano. Esse regime de usinagem pode ser alcançado em escalas submicrométricas, de forma que, em muitos cristais, as pressões impostas pela ferramenta são altas o suficiente para conduzirem uma transformação de fase do material, favorecendo, assim, a usinagem. Embora pesquisas sobre a relação entre a endentação e a usinagem tenham sido desenvolvidas, a busca por métodos matemáticos com base nas forças e deformações de endentação para serem usados em usinagem de modo a identificar as condições ótimas para remoção de material em regime dúctil não são triviais. O presente trabalho propõe uma relação mais direta com os resultados de endentação para determinar os parâmetros ótimos de usinagem dos materiais frágeis, correlacionando a área da face do endentador em contato e a área efetiva da secção de corte em usinagem. Para isso, ensaios de endentação e experimentos de usinagem com ferramenta de diamante foram realizados em escala micro e nanométrica. O material analisado aqui foi o silício monocristalino (100). Uma matriz experimental foi planejada para as possíveis correlações da variação do ângulo de saída da ferramenta e do avanço de usinagem com as áreas de endentação e o surgimento das trincas e fraturas; forças de usinagem e a pressão de transição frágil-dúctil; tensão residual; espessura crítica de corte e o estado das superfícies usinadas. Em relação às durezas obtidas, foi preciso separá-las em dois estágios: antes do surgimento das trincas durante a endentação e depois desse ponto. Durante a usinagem, a melhor remoção de material em regime dúctil foi obtida na direção mais dura do silício. Os ângulos de saída que proporcionaram resultados desfavoráveis em termos de integridade superficial foram o de -25° e ângulos mais negativos que -60°. A pressão de transição se apresentou de 12 GPa a 13 GPa, sendo que as energias específicas de corte seguiram o mesmo comportamento: 9 j/mm³ a 10 j/mm³ respectivamente. A tensão residual se mostrou inversamente proporcional às forças de usinagem. As espessuras crítica-efetivas de corte variaram de 100 nm a 560 nm. Os valores das espessuras críticas de corte estimadas pelos ensaios de endentação variaram de 200 nm a 530 nm. Portanto, foi possível mostrar que os valores de espessura crítica estimados pelo método proposto, com base nos resultados de endentação, corresponderam muito bem às espessuras críticas obtidas nos experimentos de usinagem. Assim sendo, torna-se possível determinar por meio de tal técnica os valores ótimos de usinagem, podendo ser aplicada para qualquer material cristalino. / Brittle materials, such as silicon, have been used in microelectromechanical systems, semiconductor and infrared optical devices. These types of materials are considered of difficult to machine due to the tendency to suffer fractures. The great challenge in the machining of crystalline materials is to achieve a removal of material by plastic deformations (ductile regime), because in these conditions the machined optical surfaces are generated without any superficial damage. This type of machining can be achieved on a submicrometric machining scale, so that the pressures imposed by the tool are high and lead to a phase transformation of many crystals favoring the machining in ductile regime. Although research on the relationship between microindentation and micromachining has been developed, the search for mathematical methods based on the forces and the deformations of indentation to be used in machining in order to identify the machining conditions under regime ductile are non-trivial. The present work proposes a more direct relationship with the results of the indentation to determine the optimal parameters of the fragile materials, correlating the indenter face area and the cutting section effective area in machining. For this purpose, indentation tests and diamond tool machining experiments were carried out on a micro and nanometric scale. The material analyzed here was monocrystalline silicon (100). An experimental matrix was planned for the possible correlations of the variation of the tool rake angle and of the machining feed with the areas of indentation and the beginning of cracks and fractures; cutting forces and the fragile-ductile transition pressure; residual stress; critical cutting thickness and the state of machined surfaces. In relation to the hardness obtained, it was necessary to separate them in two stages: before the emergence of the cracks during the indentation and after that point. During machining, the best removal of ductile material was obtained in the hardest direction of the silicon. The rake angles which gave unfavorable results in terms of surface integrity were -25° and angles more negative than -60°. The transition pressure reached values from 12 GPa to 13 GPa, and the specific shear energies followed the same behavior: 9 j/mm³ at 10 j/mm³ respectively. The residual stress was inversely proportional to the machining forces. Critical-effective uncut thicknesses ranged from 100 nm to 560 nm. The values of the critical uncut thicknesses estimated by the indentation tests ranged from 200 nm to 530 nm. Therefore, it was possible to show that the critical thickness values estimated by the proposed method, based on indentation results, corresponded very well to the critical thickness obtained in the machining experiments. Thus, it is possible to determine by means of such a technique the optimum values of machining, which can be applied to crystalline material.

Page generated in 0.0623 seconds