• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 5
  • 1
  • Tagged with
  • 13
  • 8
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Quotients d'une variété algébrique par un groupe algébrique linéairement réductif et ses sous-groupes maximaux unipotents

Sirois-Miron, Robin 01 1900 (has links)
La construction d'un quotient, en topologie, est relativement simple; si $G$ est un groupe topologique agissant sur un espace topologique $X$, on peut considérer l'application naturelle de $X$ dans $X/G$, l'espace d'orbites muni de la topologie quotient. En géométrie algébrique, malheureusement, il n'est généralement pas possible de munir l'espace d'orbites d'une structure de variété. Dans le cas de l'action d'un groupe linéairement réductif $G$ sur une variété projective $X$, la théorie géométrique des invariants nous permet toutefois de construire un morphisme de variété d'un ouvert $U$ de $X$ vers une variété projective $X//U$, se rapprochant autant que possible d'une application quotient, au sens topologique du terme. Considérons par exemple $X\subseteq P^{n}$, une $k$-variété projective sur laquelle agit un groupe linéairement réductif $G$ et supposons que cette action soit induite par une action linéaire de $G$ sur $A^{n+1}$. Soit $\widehat{X}\subseteq A^{n+1}$, le cône affine au dessus de $\X$. Par un théorème de la théorie classique des invariants, il existe alors des invariants homogènes $f_{1},...,f_{r}\in C[\widehat{X}]^{G}$ tels que $$C[\widehat{X}]^{G}= C[f_{1},...,f_{r}].$$ On appellera le nilcone, que l'on notera $N$, la sous-variété de $\X$ définie par le locus des invariants $f_{1},...,f_{r}$. Soit $Proj(C[\widehat{X}]^{G})$, le spectre projectif de l'anneau des invariants. L'application rationnelle $$\pi:X\dashrightarrow Proj(C[f_{1},...,f_{r}])$$ induite par l'inclusion de $C[\widehat{X}]^{G}$ dans $C[\widehat{X}]$ est alors surjective, constante sur les orbites et sépare les orbites autant qu'il est possible de le faire; plus précisément, chaque fibre contient exactement une orbite fermée. Pour obtenir une application régulière satisfaisant les mêmes propriétés, il est nécessaire de jeter les points du nilcone. On obtient alors l'application quotient $$\pi:X\backslash N\rightarrow Proj(C[f_{1},...,f_{r}]).$$ Le critère de Hilbert-Mumford, dû à Hilbert et repris par Mumford près d'un demi-siècle plus tard, permet de décrire $N$ sans connaître les $f_{1},...,f_{r}$. Ce critère est d'autant plus utile que les générateurs de l'anneau des invariants ne sont connus que dans certains cas particuliers. Malgré les applications concrètes de ce théorème en géométrie algébrique classique, les démonstrations que l'on en trouve dans la littérature sont généralement données dans le cadre peu accessible des schémas. L'objectif de ce mémoire sera, entre autres, de donner une démonstration de ce critère en utilisant autant que possible les outils de la géométrie algébrique classique et de l'algèbre commutative. La version que nous démontrerons est un peu plus générale que la version originale de Hilbert \cite{hilbert} et se retrouve, par exemple, dans \cite{kempf}. Notre preuve est valide sur $C$ mais pourrait être généralisée à un corps $k$ de caractéristique nulle, pas nécessairement algébriquement clos. Dans la seconde partie de ce mémoire, nous étudierons la relation entre la construction précédente et celle obtenue en incluant les covariants en plus des invariants. Nous démontrerons dans ce cas un critère analogue au critère de Hilbert-Mumford (Théorème 6.3.2). C'est un théorème de Brion pour lequel nous donnerons une version un peu plus générale. Cette version, de même qu'une preuve simplifiée d'un théorème de Grosshans (Théorème 6.1.7), sont les éléments de ce mémoire que l'on ne retrouve pas dans la littérature. / The topological notion of a quotient is fairly simple. Given a topological group $G$ acting on a topological space $X$, one gets the natural application from $X$ to the quotient space $X/G$. In algebraic geometry, unfortunately, it is generally not possible to give the orbit space the structure of an algebraic variety. In the special case of a linearly reductive group acting on a projective variety $X$, the geometric invariant theory allows us to get a morphism of variety from an open $U$ of $X$ to a projective variety $X//G$, which is as close as possible to a quotient map, from a topological point of view. As an example, let $ X\subseteq P^{n}$ be a $k$-projective variety on which acts a linearly reductive group $G$. Suppose further that this action is induced by a linear action of $G$ on $A^{n+1}$ and let $\widehat{X}\subseteq A^{n +1}$ be the affine cone over $X$. By an important theorem of the classical invariants theory, there exist homogeneous invariants $f_{1},..., f_{r}\in C[\widehat{X}]^{G}$ such as $$\C[\widehat{X}]^{G}=\C[f_{1},...,f_{r}].$$ The locus in $X$ of $f_{1},...,f_{r}$ is called the nullcone, noted $N$. Let $Proj(C[\widehat{X}]^{G})$ be the projective spectrum of the invariants ring. The rational map $$\pi:X\dashrightarrow Proj(C[f_{1},...,f_{r}])$$ induced by the inclusion of $C[\widehat{X}]^{G}$ in $C[\widehat{X}] $ is then surjective, constant on the orbits and separates orbits as much as possible, that is, the fibres contains exactly one closed orbit. A regular map is obtained by removing the nullcone; we then get a regular map $$\pi:X \backslash N\rightarrow Proj(C[f_{1},...,f_{r}])$$ which still satisfy the preceding properties. The Hilbert-Mumford criterion, due to Hilbert and revisited by Mumford nearly half-century later, can be used to describe $N$ without knowing the generators of the invariants ring. Since those are rarely known, this criterion had proved to be quite useful. Despite the important applications of this criterion in classical algebraic geometry, the demonstrations found in the literature are usually given trough the difficult theory of schemes. The aim of this master thesis is therefore, among others, to provide a demonstration of this criterion using classical algebraic geometry and of commutative algebra. The version that we demonstrate is somewhat wider than the original version of Hilbert \cite{hilbert}; a schematic proof of this general version is given in \cite{kempf}. Finally, the proof given here is valid for $C$ but could be generalised to a field $k$ of characteristic zero, not necessarily algebraically closed. In the second part of this thesis, we study the relationship between the preceding constructions and those obtained by including covariants in addition to the invariants. We give a Hilbert-Mumford criterion for covariants (Theorem 6.3.2) which is a theorem from Brion for which we prove a slightly more general version. This theorem, together with a simplified proof of a theorem of Grosshans (Theorem 6.1.7), are the elements of this thesis that can't be found in the literature.
12

Faisceau automorphe unipotent pour G₂, nombres de Franel, et stratification de Thom-Boardman / Unipotent automorphic sheaf for G₂, Franel numbers, and Thom-Boardman stratification

Ye, Lizao 27 September 2019 (has links)
Dans cette thèse, d’une part, nous généralisons au cas équivariant un résultat de J. Denef et F. Loeser sur les sommes trigonométriques sur un tore ; d’autre part, nous étudions la stratification de Thom-Boardman associée à la multiplication des sections globales des fibrés en droites sur une courbe. Nous montrons une inégalité subtile sur les dimensions de ces strates. Notre motivation vient du programme de Langlands géométrique. En s’appuyant sur les travaux de W. T. Gan, N. Gurevich, D. Jiang et de S. Lysenko, nous proposons, pour le groupe réductif G de type G2, une construction conjecturale du faisceau automorphe dont le paramètre d’Arthur est unipotent et sous-régulier. En utilisant nos deux résultats ci-dessus, nous déterminons les rangs génériques de toutes les composantes isotypiques d’un faisceau S₃-équivariant qui apparaît dans notre conjecture, ce S₃ étant le centralisateur du SL2 sous-régulier dans le groupe dual de Langlands de G. / In this thesis, on the one hand, we generalise to the equivariant case a result of J. Denef and F. Loeser about trigonometric sums on tori ; on the other hand, we study the Thom-Boardman stratification associated to the multiplication of global sections of line bundles on a curve. We prove a subtle inequaliity about the dimensions of these strata. Our motivation comes from the geometric Langlands program. Based on works of W. T. Gan, N. Gurevich, D. Jiang and S. Lysenko, we propose, for the reductive group G of type G2, a conjectural construction of the automorphic sheaf whose Arthur parameter is unipotent and sub-regular. Using our two results above, we determine the generic ranks of all isotypic components of an S3-equivaraint sheaf which appears in our conjecture, this S3 being the centraliser of the sub-regular SL2 inside the Langlands dual group of G.
13

Quotients d'une variété algébrique par un groupe algébrique linéairement réductif et ses sous-groupes maximaux unipotents

Sirois-Miron, Robin 01 1900 (has links)
La construction d'un quotient, en topologie, est relativement simple; si $G$ est un groupe topologique agissant sur un espace topologique $X$, on peut considérer l'application naturelle de $X$ dans $X/G$, l'espace d'orbites muni de la topologie quotient. En géométrie algébrique, malheureusement, il n'est généralement pas possible de munir l'espace d'orbites d'une structure de variété. Dans le cas de l'action d'un groupe linéairement réductif $G$ sur une variété projective $X$, la théorie géométrique des invariants nous permet toutefois de construire un morphisme de variété d'un ouvert $U$ de $X$ vers une variété projective $X//U$, se rapprochant autant que possible d'une application quotient, au sens topologique du terme. Considérons par exemple $X\subseteq P^{n}$, une $k$-variété projective sur laquelle agit un groupe linéairement réductif $G$ et supposons que cette action soit induite par une action linéaire de $G$ sur $A^{n+1}$. Soit $\widehat{X}\subseteq A^{n+1}$, le cône affine au dessus de $\X$. Par un théorème de la théorie classique des invariants, il existe alors des invariants homogènes $f_{1},...,f_{r}\in C[\widehat{X}]^{G}$ tels que $$C[\widehat{X}]^{G}= C[f_{1},...,f_{r}].$$ On appellera le nilcone, que l'on notera $N$, la sous-variété de $\X$ définie par le locus des invariants $f_{1},...,f_{r}$. Soit $Proj(C[\widehat{X}]^{G})$, le spectre projectif de l'anneau des invariants. L'application rationnelle $$\pi:X\dashrightarrow Proj(C[f_{1},...,f_{r}])$$ induite par l'inclusion de $C[\widehat{X}]^{G}$ dans $C[\widehat{X}]$ est alors surjective, constante sur les orbites et sépare les orbites autant qu'il est possible de le faire; plus précisément, chaque fibre contient exactement une orbite fermée. Pour obtenir une application régulière satisfaisant les mêmes propriétés, il est nécessaire de jeter les points du nilcone. On obtient alors l'application quotient $$\pi:X\backslash N\rightarrow Proj(C[f_{1},...,f_{r}]).$$ Le critère de Hilbert-Mumford, dû à Hilbert et repris par Mumford près d'un demi-siècle plus tard, permet de décrire $N$ sans connaître les $f_{1},...,f_{r}$. Ce critère est d'autant plus utile que les générateurs de l'anneau des invariants ne sont connus que dans certains cas particuliers. Malgré les applications concrètes de ce théorème en géométrie algébrique classique, les démonstrations que l'on en trouve dans la littérature sont généralement données dans le cadre peu accessible des schémas. L'objectif de ce mémoire sera, entre autres, de donner une démonstration de ce critère en utilisant autant que possible les outils de la géométrie algébrique classique et de l'algèbre commutative. La version que nous démontrerons est un peu plus générale que la version originale de Hilbert \cite{hilbert} et se retrouve, par exemple, dans \cite{kempf}. Notre preuve est valide sur $C$ mais pourrait être généralisée à un corps $k$ de caractéristique nulle, pas nécessairement algébriquement clos. Dans la seconde partie de ce mémoire, nous étudierons la relation entre la construction précédente et celle obtenue en incluant les covariants en plus des invariants. Nous démontrerons dans ce cas un critère analogue au critère de Hilbert-Mumford (Théorème 6.3.2). C'est un théorème de Brion pour lequel nous donnerons une version un peu plus générale. Cette version, de même qu'une preuve simplifiée d'un théorème de Grosshans (Théorème 6.1.7), sont les éléments de ce mémoire que l'on ne retrouve pas dans la littérature. / The topological notion of a quotient is fairly simple. Given a topological group $G$ acting on a topological space $X$, one gets the natural application from $X$ to the quotient space $X/G$. In algebraic geometry, unfortunately, it is generally not possible to give the orbit space the structure of an algebraic variety. In the special case of a linearly reductive group acting on a projective variety $X$, the geometric invariant theory allows us to get a morphism of variety from an open $U$ of $X$ to a projective variety $X//G$, which is as close as possible to a quotient map, from a topological point of view. As an example, let $ X\subseteq P^{n}$ be a $k$-projective variety on which acts a linearly reductive group $G$. Suppose further that this action is induced by a linear action of $G$ on $A^{n+1}$ and let $\widehat{X}\subseteq A^{n +1}$ be the affine cone over $X$. By an important theorem of the classical invariants theory, there exist homogeneous invariants $f_{1},..., f_{r}\in C[\widehat{X}]^{G}$ such as $$\C[\widehat{X}]^{G}=\C[f_{1},...,f_{r}].$$ The locus in $X$ of $f_{1},...,f_{r}$ is called the nullcone, noted $N$. Let $Proj(C[\widehat{X}]^{G})$ be the projective spectrum of the invariants ring. The rational map $$\pi:X\dashrightarrow Proj(C[f_{1},...,f_{r}])$$ induced by the inclusion of $C[\widehat{X}]^{G}$ in $C[\widehat{X}] $ is then surjective, constant on the orbits and separates orbits as much as possible, that is, the fibres contains exactly one closed orbit. A regular map is obtained by removing the nullcone; we then get a regular map $$\pi:X \backslash N\rightarrow Proj(C[f_{1},...,f_{r}])$$ which still satisfy the preceding properties. The Hilbert-Mumford criterion, due to Hilbert and revisited by Mumford nearly half-century later, can be used to describe $N$ without knowing the generators of the invariants ring. Since those are rarely known, this criterion had proved to be quite useful. Despite the important applications of this criterion in classical algebraic geometry, the demonstrations found in the literature are usually given trough the difficult theory of schemes. The aim of this master thesis is therefore, among others, to provide a demonstration of this criterion using classical algebraic geometry and of commutative algebra. The version that we demonstrate is somewhat wider than the original version of Hilbert \cite{hilbert}; a schematic proof of this general version is given in \cite{kempf}. Finally, the proof given here is valid for $C$ but could be generalised to a field $k$ of characteristic zero, not necessarily algebraically closed. In the second part of this thesis, we study the relationship between the preceding constructions and those obtained by including covariants in addition to the invariants. We give a Hilbert-Mumford criterion for covariants (Theorem 6.3.2) which is a theorem from Brion for which we prove a slightly more general version. This theorem, together with a simplified proof of a theorem of Grosshans (Theorem 6.1.7), are the elements of this thesis that can't be found in the literature.

Page generated in 0.0741 seconds