• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Theta representations on covering groups

Cai, Yuanqing January 2017 (has links)
Thesis advisor: Solomon Friedberg / Kazhdan and Patterson constructed generalized theta representations on covers of general linear groups as multi-residues of the Borel Eisenstein series. For the double covers, these representations and their (degenerate-type) unique models were used by Bump and Ginzburg in the Rankin-Selberg constructions of the symmetric square L-functions for GL(r). In this thesis, we study two other types of models that the theta representations may support. We first discuss semi-Whittaker models, which generalize the models used in the work of Bump and Ginzburg. Secondly, we determine the unipotent orbits attached to theta functions, in the sense of Ginzburg. We also determine the covers for which these models are unique. We also describe briefly some applications of these unique models in Rankin-Selberg integrals for covering groups. / Thesis (PhD) — Boston College, 2017. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Mathematics.
2

Theta liftings on double covers of orthogonal groups:

Lei, Yusheng January 2021 (has links)
Thesis advisor: Solomon Friedberg / We study the generalized theta lifting between the double covers of split special orthogonal groups, which uses the non-minimal theta representations constructed by Bump, Friedberg and Ginzburg. We focus on the theta liftings of non-generic representations and make a conjecture that gives an upper bound of the first non-zero occurrence of the liftings, depending only on the unipotent orbit. We prove both global and local results that support the conjecture. / Thesis (PhD) — Boston College, 2021. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Mathematics.
3

Faisceau automorphe unipotent pour G₂, nombres de Franel, et stratification de Thom-Boardman / Unipotent automorphic sheaf for G₂, Franel numbers, and Thom-Boardman stratification

Ye, Lizao 27 September 2019 (has links)
Dans cette thèse, d’une part, nous généralisons au cas équivariant un résultat de J. Denef et F. Loeser sur les sommes trigonométriques sur un tore ; d’autre part, nous étudions la stratification de Thom-Boardman associée à la multiplication des sections globales des fibrés en droites sur une courbe. Nous montrons une inégalité subtile sur les dimensions de ces strates. Notre motivation vient du programme de Langlands géométrique. En s’appuyant sur les travaux de W. T. Gan, N. Gurevich, D. Jiang et de S. Lysenko, nous proposons, pour le groupe réductif G de type G2, une construction conjecturale du faisceau automorphe dont le paramètre d’Arthur est unipotent et sous-régulier. En utilisant nos deux résultats ci-dessus, nous déterminons les rangs génériques de toutes les composantes isotypiques d’un faisceau S₃-équivariant qui apparaît dans notre conjecture, ce S₃ étant le centralisateur du SL2 sous-régulier dans le groupe dual de Langlands de G. / In this thesis, on the one hand, we generalise to the equivariant case a result of J. Denef and F. Loeser about trigonometric sums on tori ; on the other hand, we study the Thom-Boardman stratification associated to the multiplication of global sections of line bundles on a curve. We prove a subtle inequaliity about the dimensions of these strata. Our motivation comes from the geometric Langlands program. Based on works of W. T. Gan, N. Gurevich, D. Jiang and S. Lysenko, we propose, for the reductive group G of type G2, a conjectural construction of the automorphic sheaf whose Arthur parameter is unipotent and sub-regular. Using our two results above, we determine the generic ranks of all isotypic components of an S3-equivaraint sheaf which appears in our conjecture, this S3 being the centraliser of the sub-regular SL2 inside the Langlands dual group of G.

Page generated in 0.0517 seconds