• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 13
  • 10
  • 4
  • Tagged with
  • 59
  • 20
  • 15
  • 9
  • 9
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Escherichia coli uracil-DNA glycosylase : DNA binding, catalysis, and mechanism of action

Shroyer, Mary Jane N. 31 August 1999 (has links)
Graduation date: 2000
22

Characterization of the Escherichia coli uracil-DNA glycosylase- inhibitor protein interaction

Bennett, Samuel E. 25 August 1995 (has links)
Graduation date: 1996
23

The Development of Exogenous Anticonvulsants and Endogenous Uracil-Based Antiepileptic Agents

Ward, Sarah 19 August 2011 (has links)
Epilepsy is a common neurological disorder for which the development of new and improved therapies is essential. Thus, the central theme of this thesis pertains to the design and synthesis of putative antiepileptic drugs. A substructure search was performed on a database of exogenous compounds to find those that contain a known sodium channel pharmacophore. The anticonvulsant activity of several compounds identified by this search was evaluated, resulting in the recognition of multiple molecular classes from which new anticonvulsant scaffolds could be derived. A series of analogues derived from uracil (an endogenous molecule) were synthesized and evaluated for anticonvulsant activity. Several of these analogues displayed promising activity and minimal toxicity, further supporting the theory that uracils could serve as potent, non-toxic, broad-range antiepileptic drugs capable of targeting both ictogenesis and epileptogenesis. A uracil QSAR model was also developed that could be used in the future to guide further analogue synthesis.
24

Studies On The Mechanism Of Uracil Excision Repair In Escherichia Coli And Structure-Function Relationship Of Single Stranded DNA Binding Proteins From Escherichia Coli And Mycobacterium Tuberculosis

Bharti, Sanjay Kumar 05 1900 (has links) (PDF)
To maintain the genomic integrity, cell has evolved various DNA repair pathways. Base Excision Repair pathway (BER) is one such DNA repair pathway which is dedicated to protect DNA from small lesions such as oxidation, alkylation, deamination and loss of bases. Uracil is a promutagenic base which appears in the genome as a result of misincorporation of dUTP or due to oxidative deamination of cytosine. Uracil-DNA glycosylases (UDGs) are DNA repair enzymes that initiate multistep base excision repair (BER) pathway to excise uracil from DNA. Excision of uracil generates an abasic site (APDNA). AP-sites are cytotoxic and mutagenic to the cell. AP endonucleases act downstream to UDG in this pathway and generate substrates for DNA polymerase to fill in the correct bases. The cytotoxicity of AP-sites raises the question whether uracil excision activity is coupled to AP endonuclease activity. Also, there is transient formation of single stranded DNA (ssDNA) during DNA metabolic processes such as replication, repair and recombination. ssDNA is more prone to various nucleases and DNA damaging agents. All the living organisms encode single stranded DNA binding protein (SSB) that binds to ssDNA and protects it from various damages. In addition, SSB plays a vital role during DNA replication, repair and recombination. Studies on SSBs from prototype Escherichia coli and an important human pathogen, Mycobacterium tuberculosis have shown that despite significant variations in their quaternary structures, the DNA binding and oligomerization properties of the two are similar. My PhD thesis consists of four Chapters. Chapter 1 summarizes the relevant literature review on DNA damage and repair with an emphasis on uracil DNA glycosylase and its interacting protein, SSB. Chapters 2 and 3 describe my studies on the mechanism of uracil excision repair in E. coli. Chapter 4 describes my findings on the structure-function relationship of single stranded DNA binding proteins from E. coli and M. tuberculosis. Specific details of my research are summarized as follows: (1) Analysis of the impact of allelic exchange of ung with a mutant gene encoding Uracil DNA Glycosylase attenuated in AP-DNA binding in the maintenance of genomic integrity in Escherichia coli. There are five families of UDGs. Of these, Ung proteins (family 1 UDGs) represent highly efficient and evolutionary conserved enzymes. Structural and biochemical analysis of Ung proteins has identified two conserved motif, motif A (62GQDPY66) and motif B (187HPSPLS192) in E. coli that are important for the catalysis by Ung enzyme. Y66 of motif A is in van der Waals contact with the C5 position of the uracil and prevents entry of other bases. Earlier study from the laboratory showed that the Y66W and Y66H mutants of Ung were compromised by ~7 and ~170 fold, respectively in their uracil excision activities. However, unlike the wild-type and Y66H proteins, Y66W was not inhibited by its product (uracil or AP-DNA). In this study, by fluorescence anisotropy measurements I have shown that compared with the wild-type protein, the Y66W mutant is moderately compromised and attenuated in binding to AP-DNA. Allelic exchange of ung in E. coli with ung::kan, ungY66H:amp or ungY66W:amp alleles showed ~5, ~3.0 and ~2.0 fold, respectively increase in mutation frequencies. Analysis of mutations in the rifampicin resistance determining region (RRDR) of rpoB revealed that the Y66W allele resulted in an increase in A to G (or T to C) mutations. However, the increase in A to G mutations was mitigated upon expression of wild-type Ung from a plasmid borne gene. Biochemical and computational analyses showed that the Y66W mutant maintains strict specificity for uracil excision from DNA. Interestingly, a strain deficient in AP-endonucleases also showed an increase in A to G mutations. These findings have been discussed in the context of a proposal that the residency of DNA glycosylase(s) onto the AP-sites they generate shields them until recruitment of AP-endonucleases for further repair. It is proposed that an error prone replication against AP-sites (as a result of uracil excision activities on A:U pair) may result in A to G mutations. 2. Mechanism of appearance of A to G mutations in ungY66W:amp strain of Escherichia coli. In this part of my study, I have investigated the role of error prone DNA polymerases in the mutational specificity of ungY66W:amp strain. It was observed from various studies in E. coli that, DNA polymerase IV (Pol IV) and DNA polymerase V (Pol V) are involved in error-prone replication on damaged or AP-site containing DNA. E. coli strains containing deletion of either dinB (encoding DNA Pol IV) or umuDC (encoding DNA Pol V) were generated and used to study mutation frequency and mutation spectrum. Deletion of DNA Pol V resulted in a decrease in A to G mutations in ungY66W:amp E. coli strain, suggesting that increase in A to G mutations were a consequence of error prone incorporation by DNA Pol V. 3. Structure and Function studies on Single Stranded DNA Binding Proteins from Escherichia coli and Mycobacterium tuberculosis. SSB from M. tuberculosis (MtuSSB) has similar domain organization as the EcoSSB. Moreover, the biochemical properties such as oligomerization, DNA binding affinity and minimum binding site size requirements were shown to be similar to EcoSSB. However, structural studies suggested that quaternary structures of these two SSBs are variable. In this study I have used X-ray crystal structure information of these two SSBs to generate various chimeras after swapping at various regions of SSBs. Chimeras mβ1, mβ1’β2, mβ1-β5, mβ1-β6, and mβ4-β5 SSBs were generated by substituting β1 (residues 611), β1’β2 (residues 21-45), β1-β5 (residues 1 to 111), β1-β6 including a downstream sequence (residues 1 to 130), and β4-β5 (residues 74-111) regions of EcoSSB with the corresponding sequences of MtuSSB, respectively. Additionally, mβ1’β2ESWR SSB was generated by mutating the MtuSSB specific ‘PRIY’ sequence in the β2 strand of mβ1’β2 SSB to EcoSSB specific ‘ESWR’ sequence. Biochemical characterization revealed that except for mβ1 SSB, all chimeras and a control construct lacking the C-terminal domain (ΔC SSB) efficiently bound DNA in modes corresponding to limited and unlimited modes of binding. The mβ1 SSB was also hypersensitive to chymotrypsin treatment. The mβ1-β6, MtuSSB, mβ1’β2 and mβ1-β5 constructs complemented E. coli Δssb in a dose dependent manner. Complementation by the mβ1-β5 SSB was poor. In contrast, mβ1’β2ESWR SSB complemented E. coli as well as EcoSSB. Interestingly, the inefficiently functioning SSBs resulted in an elongated cell/filamentation phenotype of E. coli. Taken together, our observations suggest that specific interactions within the DNA binding domain of the homotetrameric SSBs are crucial for their biological function.
25

Syntéza a studium reaktivity a biologické aktivity C5 substituovaných analog uracilu / Synthesis, reactivity and biological activity of C5 substituted uracil analogues

Brulíková, Lucie January 2011 (has links)
Bibliographical identification: Author's first name and surname: RNDr. Lucie Brulíková (nee Spáčilová) Title: Synthesis, reactivity and biological activity of C-5 substituted uracil analogues Type of thesis: Ph.D. thesis Department: Department of Organic Chemistry, Faculty of Science, Palacký University Olomouc Advisor: prof. RNDr. Antonín Holý, Dr.Sc., Dr.hc. mult. Advisor-consultant: doc. RNDr. Jan Hlaváč, Ph.D. The year of presentation: 2011 Abstract: The presented thesis is focused on the synthesis of various C-5 modified uracil analogues, the study of their reactivity and biological activity, especially cytotoxic activity. In the first part, the brief survey of described results for selected 5-alkoxymethyluracil analogues is performed. The second part of the presented thesis deals with the synthesis of novel uracil analogues modified at the C-5 position, the development and optimizing of procedure leading to the desired compounds, the study of biological activity and the evaluation of structure- activity relationship (SAR). This part presents the synthesis of a series of 5-[alkoxy(4- nitrophenyl)methyl)]uracil and 5-alkoxymethyluracil analogues and extended SAR studies depending on a substitution of metylene bridge directly attached at the C-5 position as well as alkoxy chain length. The last part of...
26

Ugene, a Newly Identified Protein that is Commonly Over-Expressed in Cancer, and that Binds to Uracil DNA-Glycosylase

Guo, Chunguang January 2009 (has links)
No description available.
27

The Use of Nucleobases in Organic Photodiodes

Frantz, Eric A. January 2015 (has links)
No description available.
28

The role of DNA repair in DNA methylation dynamics

Gould, Poppy Aeron January 2018 (has links)
The mammalian epigenome is globally reprogrammed at two stages of development; this involves the erasure and re-establishment of DNA methylation by both passive and active mechanisms, including DNA repair pathways, and occurs concurrently with an increase in developmental potency. In addition to Uhrf1 and the Tet enzymes, the interplay between activation induced cytidine deaminase (AID) and the DNA repair machinery has been implicated in epigenetic reprogramming of various in vivo and in vitro systems including mouse primordial germ cells, zygotes and induced pluripotent stem cells. AID deaminates cytosine to uracil and can also deaminate methylcytosine, whereas the primary role of UNG is to maintain the integrity of the genome through erasure of uracil. In this thesis, I have aimed to investigate the role of DNA repair in demethylation. To do this I have focused on the specific role of AID and UNG in the demethylation of a static system – primed serum ESCs and a dynamic system – serum to 2i (naïve) to epiblast-like ES cells. As the role of both AID and UNG involves genomic uracil, the central theme of my thesis is the impact of accumulation of uracil on DNA methylation levels in the genome. Therefore, my first aim was to develop a quantitative method to detect low levels of genomic uracil in DNA firstly, by mass spectrometry and secondly, by whole genome sequencing. In Chapter Three, I show that the impact of deamination during DNA preparation can be minimised, such that the level of genomic ESC uracil can be accurately determined as around 12,000 uracil per genome and that, as anticipated, Ung null ESCs have almost twice the genomic uracil content of wildtype ESCs. Secondly, I address the main question which is the impact of uracil accumulation on methylation levels. In order to do this, I generate two cell lines: Ung knockout and Aid over expressing, both of which should result in an increase in genomic uracil. I demonstrate that while over expression of Aid stimulates demethylation in static system and in a dynamic demethylating system, the impact of Ung knockout is less clear. In (static) serum ESCs, loss of Ung results in hypomethylation however, in order to transition to 2i (naïve) ESCs, a process which involves demethylation of the genome, it appears the Ung is required as loss of this gene inhibits proper demethylation. As such, I conclude that UNG-mediated DNA repair functions alongside passive demethylation, by reduction of UHRF1 levels, to demethylate 2i ESCs. To probe the mechanism by which accumulation of uracil in the genome alters methylation levels, I investigate the impact of Ung KO and Aid OE on global levels of DNA damage. I show that both cell lines have a greater incidence of double strand breaks compared to a wild type cell line, and accordingly, upregulate their DNA damage response pathway and the expression of certain repair genes. I suggest that increasing genomic levels of uracil causes genomic instability and that DNA demethylation occurs as a consequence of the repair of extensive DNA damage. More broadly, I suggest that ESCs are uniquely poised, due to their heightened DNA damage response, to use uracil as an intermediate of DNA demethylation. Interestingly, I also note that the biological impact on serum ESCs of loss of Ung appears to be an increase in pluripotency.
29

Hidroperóxido de timina como fonte biológica de oxigênio molecular singlete [O2 (1Δg)] / Thymine hydroperoxide as biological source of singlet molecular oxygen [O2 (1Δg)]

Prado, Fernanda Manso 24 November 2009 (has links)
A oxidação do DNA por espécies reativas de oxigênio, como o oxigênio molecular singlete [O2 (1Δg)] , pode estar relacionada ao aparecimento de mutações e ao desenvolvimento de doenças. O O2 (1Δg) pode ser gerado biologicamente por reação de fotossensibilização, pela reação de H2O2 e HOCl e pela decomposição de peróxidos orgânicos contendo hidrogênio alfa (α-ROOH), na presença de metais de transição (Fe2+, Cu2+) ou HOCl. A decomposição de α-ROOH, como hidroperóxidos de lipídeos ou proteínas na presença de metais de transição, pode gerar O2 (1Δg) via mecanismo de Russell. Neste mecanismo, a oxidação de α -ROOH gera radicais peroxila, que podem reagir entre si, formando um intermediário tetraóxido linear. Este intermediário tetraóxido linear pode decompor através de um mecanismo cíclico e produzir O2 (1Δg), um álcool e um composto carbonílico. Como a decomposição de α-ROOH pelo mecanismo de Russell pode ser uma importante fonte biológica de O2 (1Δg) decidimos investigar se o α-hidroperóxido de timina, 5-(hidroperoximetil)uracil (5-HMPU), poderia gerar esta espécie reativa na presença de metais (Ce4+, Fe2+, Cu2+) e HOCl. Outro objetivo foi avaliar os efeitos oxidativos, em DNA plasmidial (pBR322), da decomposição de 5-HPMU na presença de Cu2+. A geração de O2 (1Δg) na reação de 5-HPMU e Ce4+ ou HOCl foi demonstrada por meio do monitoramento da emissão de luz monomolecular de O2 (1Δg) na região do infravermelho próximo (IR-próximo, λ = 1270 nm) e bimolecular na região do visível (λ = 634 e 703 nm). A aquisição do espectro de emissão de O2 (1Δg) forneceu evidências inequívocas da geração desta espécie reativa na reação de 5-HPMU e Ce4+ ou HOCl. Além disto, a formação de O2 (1Δg) na reação de 5-HPMU e Fe2+, Cu2+ ou HOCl foi demonstrada através da captação química de O2 (1Δg) utilizando 9,10- divinilsulfonatoantraceno (AVS) e detecção por HPLC/MS/MS do endoperóxido (AVSO2) formado. A detecção por HPLC/MS/MS dos produtos de decomposição de 5-HPMU, 5- (hidroximetil)uracila (5-HMU) e 5-formiluracila (5-FoU), reforçaram a hipótese de geração de O2 (1Δg) pelo mecanismo de Russell. A análise dos resultados da incubação de pBR322, 5-HPMU e crescente concentração de Cu2+ mostraram o aumento da forma circular aberta (OC), indicando a formação de quebra de fita simples do DNA, provavelmente proveniente da presença dos radicais peroxila e alcoxila de 5-HPMU. Já a utilização das enzimas de reparo FPG e NTH na incubação de pBR322, 5-HPMU e Cu2+ forneceu evidências da formação preferencial de purinas oxidadas, especialmente de 2’-desoxiguanosina (dGuo). O aumento significativo da forma OC na presença de FPG indicou a formação de 8-oxo-2’-desoxiguanosina, resultante da oxidação da dGuo por O2 (1Δg) e/ou pelos radicais derivados de 5-HPMU. Podemos concluir que 5-HPMU pode ser uma importante fonte biológica de O2 (1Δg) . Além disto, a presença de 5-HPMU pode levar a propagação dos danos oxidativos no DNA, pois sua decomposição pode gerar radicais peroxila e alcoxila / Oxidation of DNA by singlet molecular oxygen O2 (1Δg) can be involved in the development of mutations and diseases. In vivo, O2 (1Δg) can be generated by photosensitization reaction, H2O2 and HOCl reaction and decomposition of organic hydroperoxides with α-hydrogen (α-ROOH) in the presence of metal ions (Fe2+, Cu2+) or HOCl. The α-ROOH decomposition, such as lipid or protein hydroperoxides in the presence of metal ions or HOCl can generate O2 (1Δg) by Russell mechanism. In this mechanism, the self-reaction of peroxyl radicals generates a linear tetraoxide intermediate that decomposes to O2 (1Δg) , an alcohol and an aldehyde. Therefore, the purpose of this work is to investigate if O2 (1Δg) can be generated by α-thymine hydroperoxide, 5- (hydroperoxymethyl)uracil (5-HPMU) in the presence of Ce4+, Fe2+, Cu2+ or HOCl. Another purpose is to study base modification and strand breaks formation in plasmid DNA (pBR322) by 5-HPMU decomposition in the presence of Cu2+. The generation of O2 (1Δg) in the reaction of 5- HPMU and Ce4+ or HOCl was monitored by monomol light emission in the near-infrared region (NIR, λ = 1270 nm) and dimol light emission in the visible region (λ = 634 e 703 nm). The generation of O2 (1Δg) during the reaction of 5-HPMU and Ce4+ or HOCl was confirmed by acquisition of the light emission spectrum in the NIR. Furthermore, the generation of O2 (1Δg) produced by 5-HPMU and Fe2+, Cu2+ or HOCl was also confirmed by chemical trapping using anthracene-9,10-divinylsulfonate (AVS) and HPLC/MS/MS detection of the corresponding endoperoxide (AVSO2). The detection by HPLC/MS/MS of 5-(hydroxymethyl)uracil (5-HMU) and 5-formyluracil (5-FoU), two 5-HPMU decomposition products, support the Russell mechanism. Plasmid results from pBR322, 5-HPMU and Cu2+ reaction showed formation of DNA open circular form (OC), probably produced by 5-HPMU peroxyl and alkoxyl radicals. Additionally, the reaction of pBR322, 5-HPMU and Cu2+ following by Fpg and NTH enzyme treatment demonstrated evidences of purine modification, especially 2’-deoxyguanosine (dGuo). The use of FPG enzyme indicated the formation of 8-oxo-7,8-dihydro-2’-deoxyguanosine, a dGuo oxidation product formed by O2 (1Δg) and/or 5-HPMU peroxyl and alkoxyl radicals. We can conclude that 5-HPMU can be a biological source of O2 (1Δg)] and 5-HPMU decomposition can lead to an enhancing of DNA oxidative damage by 5-HPMU peroxyl and alkoxyl radicals formation
30

Hidroperóxido de timina como fonte biológica de oxigênio molecular singlete [O2 (1Δg)] / Thymine hydroperoxide as biological source of singlet molecular oxygen [O2 (1Δg)]

Fernanda Manso Prado 24 November 2009 (has links)
A oxidação do DNA por espécies reativas de oxigênio, como o oxigênio molecular singlete [O2 (1Δg)] , pode estar relacionada ao aparecimento de mutações e ao desenvolvimento de doenças. O O2 (1Δg) pode ser gerado biologicamente por reação de fotossensibilização, pela reação de H2O2 e HOCl e pela decomposição de peróxidos orgânicos contendo hidrogênio alfa (α-ROOH), na presença de metais de transição (Fe2+, Cu2+) ou HOCl. A decomposição de α-ROOH, como hidroperóxidos de lipídeos ou proteínas na presença de metais de transição, pode gerar O2 (1Δg) via mecanismo de Russell. Neste mecanismo, a oxidação de α -ROOH gera radicais peroxila, que podem reagir entre si, formando um intermediário tetraóxido linear. Este intermediário tetraóxido linear pode decompor através de um mecanismo cíclico e produzir O2 (1Δg), um álcool e um composto carbonílico. Como a decomposição de α-ROOH pelo mecanismo de Russell pode ser uma importante fonte biológica de O2 (1Δg) decidimos investigar se o α-hidroperóxido de timina, 5-(hidroperoximetil)uracil (5-HMPU), poderia gerar esta espécie reativa na presença de metais (Ce4+, Fe2+, Cu2+) e HOCl. Outro objetivo foi avaliar os efeitos oxidativos, em DNA plasmidial (pBR322), da decomposição de 5-HPMU na presença de Cu2+. A geração de O2 (1Δg) na reação de 5-HPMU e Ce4+ ou HOCl foi demonstrada por meio do monitoramento da emissão de luz monomolecular de O2 (1Δg) na região do infravermelho próximo (IR-próximo, λ = 1270 nm) e bimolecular na região do visível (λ = 634 e 703 nm). A aquisição do espectro de emissão de O2 (1Δg) forneceu evidências inequívocas da geração desta espécie reativa na reação de 5-HPMU e Ce4+ ou HOCl. Além disto, a formação de O2 (1Δg) na reação de 5-HPMU e Fe2+, Cu2+ ou HOCl foi demonstrada através da captação química de O2 (1Δg) utilizando 9,10- divinilsulfonatoantraceno (AVS) e detecção por HPLC/MS/MS do endoperóxido (AVSO2) formado. A detecção por HPLC/MS/MS dos produtos de decomposição de 5-HPMU, 5- (hidroximetil)uracila (5-HMU) e 5-formiluracila (5-FoU), reforçaram a hipótese de geração de O2 (1Δg) pelo mecanismo de Russell. A análise dos resultados da incubação de pBR322, 5-HPMU e crescente concentração de Cu2+ mostraram o aumento da forma circular aberta (OC), indicando a formação de quebra de fita simples do DNA, provavelmente proveniente da presença dos radicais peroxila e alcoxila de 5-HPMU. Já a utilização das enzimas de reparo FPG e NTH na incubação de pBR322, 5-HPMU e Cu2+ forneceu evidências da formação preferencial de purinas oxidadas, especialmente de 2’-desoxiguanosina (dGuo). O aumento significativo da forma OC na presença de FPG indicou a formação de 8-oxo-2’-desoxiguanosina, resultante da oxidação da dGuo por O2 (1Δg) e/ou pelos radicais derivados de 5-HPMU. Podemos concluir que 5-HPMU pode ser uma importante fonte biológica de O2 (1Δg) . Além disto, a presença de 5-HPMU pode levar a propagação dos danos oxidativos no DNA, pois sua decomposição pode gerar radicais peroxila e alcoxila / Oxidation of DNA by singlet molecular oxygen O2 (1Δg) can be involved in the development of mutations and diseases. In vivo, O2 (1Δg) can be generated by photosensitization reaction, H2O2 and HOCl reaction and decomposition of organic hydroperoxides with α-hydrogen (α-ROOH) in the presence of metal ions (Fe2+, Cu2+) or HOCl. The α-ROOH decomposition, such as lipid or protein hydroperoxides in the presence of metal ions or HOCl can generate O2 (1Δg) by Russell mechanism. In this mechanism, the self-reaction of peroxyl radicals generates a linear tetraoxide intermediate that decomposes to O2 (1Δg) , an alcohol and an aldehyde. Therefore, the purpose of this work is to investigate if O2 (1Δg) can be generated by α-thymine hydroperoxide, 5- (hydroperoxymethyl)uracil (5-HPMU) in the presence of Ce4+, Fe2+, Cu2+ or HOCl. Another purpose is to study base modification and strand breaks formation in plasmid DNA (pBR322) by 5-HPMU decomposition in the presence of Cu2+. The generation of O2 (1Δg) in the reaction of 5- HPMU and Ce4+ or HOCl was monitored by monomol light emission in the near-infrared region (NIR, λ = 1270 nm) and dimol light emission in the visible region (λ = 634 e 703 nm). The generation of O2 (1Δg) during the reaction of 5-HPMU and Ce4+ or HOCl was confirmed by acquisition of the light emission spectrum in the NIR. Furthermore, the generation of O2 (1Δg) produced by 5-HPMU and Fe2+, Cu2+ or HOCl was also confirmed by chemical trapping using anthracene-9,10-divinylsulfonate (AVS) and HPLC/MS/MS detection of the corresponding endoperoxide (AVSO2). The detection by HPLC/MS/MS of 5-(hydroxymethyl)uracil (5-HMU) and 5-formyluracil (5-FoU), two 5-HPMU decomposition products, support the Russell mechanism. Plasmid results from pBR322, 5-HPMU and Cu2+ reaction showed formation of DNA open circular form (OC), probably produced by 5-HPMU peroxyl and alkoxyl radicals. Additionally, the reaction of pBR322, 5-HPMU and Cu2+ following by Fpg and NTH enzyme treatment demonstrated evidences of purine modification, especially 2’-deoxyguanosine (dGuo). The use of FPG enzyme indicated the formation of 8-oxo-7,8-dihydro-2’-deoxyguanosine, a dGuo oxidation product formed by O2 (1Δg) and/or 5-HPMU peroxyl and alkoxyl radicals. We can conclude that 5-HPMU can be a biological source of O2 (1Δg)] and 5-HPMU decomposition can lead to an enhancing of DNA oxidative damage by 5-HPMU peroxyl and alkoxyl radicals formation

Page generated in 0.0489 seconds